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NeuroVE: Brain-Inspired Linear-Angular Velocity
Estimation With Spiking Neural Networks
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Abstract—Vision-based ego-velocity estimation is a fundamental
problem in robot state estimation. However, the constraints of
frame-based cameras, including motion blur and insufficient frame
rates in dynamic settings, readily lead to the failure of conventional
velocity estimation techniques. Mammals exhibit a remarkable
ability to accurately estimate their ego-velocity during aggressive
movement. Hence, integrating this capability into robots shows
great promise for addressing these challenges. In this letter, we
propose a brain-inspired framework for linear-angular velocity
estimation, dubbed NeuroVE. The NeuroVE framework employs
an event camera to capture the motion information and implements
spiking neural networks (SNNs) to simulate the brain’s spatial
cells’ function for velocity estimation. We formulate the velocity
estimation as a time-series forecasting problem. To this end, we de-
sign an Astrocyte Leaky Integrate-and-Fire (ALIF) neuron model
to encode continuous values. Additionally, we have developed an
Astrocyte Spiking Long Short-term Memory (ASLSTM) structure,
which significantly improves the time-series forecasting capabili-
ties, enabling an accurate estimate of ego-velocity. Results from
both simulation and real-world experiments indicate that NeuroVE
has achieved an approximate 60% increase in accuracy compared
to other SNN-based approaches.

Index Terms—Neurorobotics, bioinspired robot learning,
SLAM.

I. INTRODUCTION

V ISION-BASED ego-velocity estimation is essential for
robot state estimation, especially in dynamic environ-

ments. In intricate, highly dynamic scenes, conventional
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Fig. 1. The linear and angular speed estimation pipeline mirrors the processes
of the human brain and robotic systems. In the vision circuits, the sensor
transforms external light into spike signals. In the motion circuits, these signals
are first encoded with temporal information. Subsequently, linear speed (LS)
and angular speed (AS) cells translate these spikes into velocity signals.

frame-based cameras encounter limitations such as motion blur
and varying illumination. These limitations often hinder the
detection of visual features by traditional vision methods, po-
tentially resulting in failures.

Humans’ visual perception and motion estimation demon-
strate impressive abilities, particularly in accurately estimating
speed and responding swiftly. In the human brain, there exists a
special class of cells known as spatial cells, which include linear
speed (LS) cells, angular speed (AS) cells [1], and time cells [2].
As shown in Fig 1, the vision motion circuits receive external
light signals, which are converted into spikes and then conveyed
to the cerebral cortex, where they activate spatial cells. These
essential discoveries have inspired us to solve the problem of
velocity estimation by mimicking the vision motion circuits in
the brain.

In terms of vision circuit modeling, the neuromorphic sen-
sor [3], e.g., event cameras [4], has been developed by leverag-
ing the principles of brain-based vision. It exhibits exceptional
temporal resolution and dynamic range, enabling excellent per-
formance in dynamic scenarios where frame-based cameras
may fail. However, the asynchronous triggering property of
neuromorphic sensors poses challenges for direct applications
of these traditional computer vision approaches.

In terms of motion circuit modeling, SNNs are considered the
most representative brain-inspired models for modeling human
brain functions due to their biological plausibility [5], [6]. SNNs
have shown excellent performance in the field of visual tasks [7],
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including image classification. However, modeling the sequen-
tial velocity estimation problem for time-series learning poses
two significant challenges for existing SNN models. Firstly, the
inherent sparsity, as well as low-precision spike representation,
leads to a deficiency in numerical accuracy, potentially affecting
their expressive ability in complex tasks. Secondly, conventional
SNN models, like Leaky Integrate-and-Fire (LIF) models, suffer
from poor predictive capabilities. when confronted with the
intricacies of time-series data. Therefore, it is necessary to devise
a novel neuron model and network structure to tackle these
challenges effectively.

In this letter, we propose a brain-inspired framework, Neu-
roVE, specifically tailored to model vision motion circuits,
enabling accurate estimations of the linear and angular velocities
from event camera data. To address the limitation of numerical
precision, we design a novel ALIF neurons model inspired
by astrocytes [8]. Astrocytes can synchronize neuronal firing
by regulating the ion concentration and neurotransmitter levels
among nerve cells, playing an indispensable role in maintaining
brain functions such as the circadian rhythm.

To the best of our knowledge, this is the first brain-inspired
approach to solving linear and angular velocity estimation
problems by mimicking the brain’s vision motion circuits. We
summarize our main contributions as follows:
� We propose a brain-inspired framework that simulates the

vision motion circuits of the brain for velocity estimation.
The framework integrates an event camera for capturing
motion information and employs brain-inspired SNNs to
simulate spatial cells such as LS cells, AS cells, and time
cells.

� Inspired by astrocytes, we design a brain-inspired neuron
model, ALIF, that incorporates the neurotransmitter diffu-
sion mechanism into the neuron dynamics.

� We introduce a brain-inspired SNN structure, ASLSTM,
which integrates the dynamic property of ALIF neurons
with the time-series forecasting capability of LSTM.

II. RELATED WORK

A. Numerical Regression With SNNs

Spiking neural networks, a category of computational models
inspired by biological neural systems, exhibit distinctive supe-
riority in processing dynamic visual data. The existing studies
on numerical regression with SNNs usually employ population
coding or membrane potential to encode numerical information.

Population coding represents values through the activation
patterns of neuronal populations. N. Iannella et al. use the
inter-spike interval (ISI) coding approach to approximate a
nonlinear function [9]. Lv et al. propose SNNs designed for
time-series forecasting tasks, which utilize fully connected (FC)
layer coding to generate its outputs [10]. Employing the FC
layer for output coding in SNNs represents an instantiation
of population coding, which fundamentally uses the collective
activity of neurons to encode information. Gehrig et al. used
SNN to estimate the angular velocity of the event camera [11].
Their network architecture comprises six convolutional layers
followed by a single fully connected layer.

The spike within SNNs are binary coding in nature. The
binary code typically implies a more extensive neuronal pop-
ulation to encode continuous values effectively. To mitigate
the redundancy in neuronal populations solely for numerical

encoding, the approach of membrane potential encoding has
been introduced. The membrane potential encoding approach
maps discrete spiking to continuous values by the non-spiking
neurons. Consequently, the absence of a reset mechanism in
the neuron’s membrane potential implies that the membrane
potential can represent continuous values.

Recently, several applications have attempted to use mem-
brane potentials to encode continuous values, including opti-
cal flow estimation and image generation, etc [12], [13]. Fur-
thermore, certain classification problems incorporate regression
techniques to determine the probability distribution across var-
ious classes [14], [15]. Henkes et al. have provided an in-depth
discussion on the regression challenges within SNNs and pro-
posed a spiking long short-term memory (SLSTM) model to
address numerical problems [16].

Nonetheless, despite these great progresses, the binary spike
representation potentially limits the representational precision
of existing models. As information theory dictates, a higher
precision representation of continuous values necessitates more
information. Our approach efficiently encodes continuous val-
ues in SNNs through the introduction of a mechanism for the
diffusion of membrane potentials.

B. Event-Based Velocity Estimation

While significant progress has been achieved in navigation
and localization, exploring first-order kinematics remains under-
explored. In the current event-based odometry approach, some
studies have optimized the pose and velocity of the event camera
concurrently as state variables, which is especially prevalent
in visual-inertial odometry (VIO) processes. Mueggler et al.
have introduced a continuous-time VIO framework. Unlike
discrete-time VIO, which estimates pose and velocity separately
and may be susceptible to inconsistencies, the continuous-time
approach offers a coherent and unified representation of pose and
velocity [17]. In [18], a method is proposed for simultaneously
estimating an event camera’s velocity and pose, leveraging a
known photometric 3D map. They derived an intensity-change
residual loss and determined the pose and velocity of the event
camera by nonlinear optimization.

Another vein of research focuses on the unique asynchronous
spatio-temporal properties of event cameras for the direct es-
timation of velocity. A pioneering work goes back to the con-
trast maximization (CM) framework introduced by Guillermo
et al. [19]. However, the computational cost associated with CM
often impedes running in real-time. Peng et al. have introduced
a geometry-based velocity estimation method. They have for-
mulated a closed-form solution for linear velocity estimation by
employing the trifocal tensor [20]. Li et al. have introduced a cal-
ibration method established on linear velocity correlation [21].
They estimate the camera’s linear velocity under the constraint of
linear motion for calibration. This geometry-based methodology
assumes robust feature extraction to capture motion information
effectively. More recently, the contributions of Lu et al. are
particularly noteworthy, which proposed an advanced velome-
ter [22]. They employed stereos event cameras to determine
the depth and normal flow and integrated IMU data within a
continuous-time framework.

The majority of existing approaches rely on traditional com-
puter vision pipelines, which fail to fully harness the potential
of event cameras. Our brain-inspired computational paradigm
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Fig. 2. NeuroVE framework. The event data is denoted as (t, x, y, p) and partitioned into n chronological bins. These events are processed by spike coding and
transformed into time-series spikes [T,B,C × n,H,W ], where T represents the time step, B represents the batch size, C represents the number of channels, n
represents the number of pieces into which the events are chronologically divided, H and W is the height and width, respectively. Finally, these time-series spikes
are processed by the spiking feature extractor and the velocity estimator to infer the linear and angular velocities directly.

effectively integrates the asynchronous spatio-temporal charac-
teristics of event camera data.

III. METHODOLOGY

A. NeuroVE Framework

The NeuroVE framework is depicted in Fig. 2, which con-
sists of three main components: spike encoding, spiking feature
extractor, and velocity estimator.
� Spike Encoding: The data pre-processing phase, which

categorizes event data over a specified time interval based
on its polarity, assigns events with negative polarity to
channel 0 and positive polarity to channel 1 in each chrono-
logical bin.

� Spiking Feature Extractor: The spiking feature extrac-
tor comprises N sequential blocks, each equipped with a
convolutional layer, a batch normalization layer [23], and
a LIF neuron.

� Velocity Estimator: The velocity estimator receives the
high-level features generated by the Spiking Feature Ex-
tractor. Furthermore, the velocity estimator integrates
ALIF neurons with ALSTM, enabling accurate estimation.

Activation of LS and AS cells in the brain has been demon-
strated to exhibit a nonlinear correlation with the linear and an-
gular velocities [1]. Moreover, time cells do not encode absolute
temporal information, such as circadian rhythms. Instead, they
are specialized in encoding sequential information [2].

Accordingly, the operational mechanism of these cells can be
effectively modeled using SNNs. In the spike encoding phase,
we simulate the function of time cells by mapping sequential
event camera data into n chronological bins. Besides, we regard
the SNNs as a nonlinear mapping, like LS and AS cells, that
transforms high-dimensional event data into a six-dimensional

velocity vector. Once trained, the network predicts velocity at
every moment, even with novel scenarios, by the inherent tem-
poral structure of event data. This time-series forecasting-based
velocity estimation approach enables our model to adapt to
known data distributions and generalize to new environments.

In the following subsections, we dive into the foundational
design principles and implementation details of the ALIF (Sec-
tion III-B) and ASLSTM (Section III-C) models.

B. Astrocytes Leaky Integrate-and-Fire Neurons

In this section, we introduce the ALIF neuron model, which
can effectively solve the instability of SNNs in numerical re-
gression problems.

The basic LIF model can be written as

τ
dV (t)

dt
= −(V (t)− Vrest) +RI(t),

V (t) = Vrest, if V (t) > Vth, (1)

where V (t) is the membrane potentials at time t, Vrest is the
neuronal resting potential, I(t) is the pre-synaptic input current,
R is the neuronal resistance and τ is the leakage constant. When
the membrane potential exceeds the threshold Vth, the neuron
fires an action potential, followed by a membrane potential
returns to the resting potential Vrest. If the membrane potential
fails to reach the threshold Vth, it undergoes leakage at 1/τ rate.

However, the sparsity firing pattern induced by the LIF neuron
model poses challenges for numerical regression applications.
Sparse signals cannot inherently maintain high precision values
with integrity. The neuron’s membrane potential is initialized at
the resting level, requiring sufficient time to accumulate charge
to reach the threshold for firing. While increasing the time step
relieves this issue to a degree. It concurrently leads to expo-
nentially increasing network dimensions and memory usage.
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Moreover, the numerical challenges introduced by sparsity are
not effectively addressed by simply increasing the time step,
particularly in the time series forecasting problem.

Astrocytes orchestrate the synchronization of neural signals
through the modulatory control of neurotransmitter transmission
among neurons [8]. Inspired by astrocytes, we introduce a dif-
fusion model grounded in Fick’s law [24], designed to simulate
the neurotransmitter transfer from astrocytes to neurons.

J(i, j) = D
∂C

∂t
= D(Vi − Vj), (2)

where J(i, j) represents the diffusion equation between the ith
and jth neurons, D is the diffusion coefficient, and C repre-
sents the concentration of neurotransmitters on the postsynaptic
terminal. However, to avoid the introduction of superfluous hy-
perparameters, the C is defined as the differential in membrane
potentials across neurons. Consequently, we obtain the ALIF
model.

τ
dV (t)

dt
= −(V (t)− Vrest) +R(I(t) + J),

V (t) = Vrest, if V (t) > Vth. (3)

Equation (3) implies that the membrane potential is transmitted
to adjacent neurons. To derive a gradient-friendly solution for
(3), it is effective to adapt the formula for iterative computation
and assume that Vrest is equal to 0. We employ the Euler method
for the first-order differential equation [7] as

V t+1
j = (1− dt

τ
)V t

j +
dt

τ
R(Itj + J(i, j)),

V t
j = Vrest, if V t

j > Vth, (4)

where the upper index t and lower index j denote time moment
and neuron index, respectively. The pre-synaptic current I(t)
is the neuron’s input signal X , and R is the operator f(·),
encompassing various forms such as convolutional or linear
operators. Additionally, we denote (1− dt

τ ) as α and dt
τ as β.

Thus, (4) can be simplified to

V t+1
j = αV t

j + β(f(Xj +D(V
tf
i − V t0

j ))),

V t
j = 0, if V t

j > Vth, (5)

where V t0
j is the initial membrane potential of the jth neuron,

V
tf
i is the membrane potential of the ith neuron at tf moment.
Finally, by simplifying the constant term in (5) and assuming

V t0
j = 0, we derive an iterative formulation for the ALIF neuron

model.

V t+1
j = (1− St

j)V
t
j + f(Xj +DV

tf
i ), (6a)

St
j = H(V t

j ), (6b)

H =

{
0, V t

j < Vth

1, V t
j ≥ Vth

. (6c)

The iterative process of the ALIF neuron model involves
two sequential phases: updating the neuron’s state (6a) and
spike firing (6b). When the membrane potential exceeds the
threshold value, the neuron generates a spike. Subsequently, at
the next time step, the neuron will reset its membrane potential
depending on the occurrence of spikes. Furthermore, due to
the non-differentiable property of (6c), alternative surrogate
function [7] is employed during the training phase.

Fig. 3. The illustration describes the diffusion mechanism of membrane poten-
tials in the two-dimensional computational graph of SNNs. Here, the blue block
represents the LIF neurons, and the pink block represents the astrocyte-inspired
diffusion mechanism.

Fig. 3 illustrates the phenomenon where the membrane po-
tential of the i-th neuron diffuses into the j-th neuron at a
predefined rate. In SNNs, inputs propagate concurrently across
both temporal and spatial dimensions, which thereby can be
unfolded as a two-dimensional computational graph.

We employ a temporally prioritized sequential computational
method for our neural network. Computing the activation state
of each neuron at a given time step before moving on to the next.
This sequential computation ensures that astrocytes are informed
of the membrane potential at the final step of the preceding
neuron and enables the effective diffusion of these potentials
across the network.

C. Astrocytes Spiking Long Short-Term Memory Network

The task of linear-angular velocity regression for an event
camera is formulated as a time-series model, capturing the se-
quential progression of velocities over time. Despite the spatio-
temporal dynamics inherent to SNNs, our empirical findings
indicate that directly employing plain SNNs into a time-series
model is prone to encountering gradient explosion issues during
the backpropagation phase.

Accordingly, we first introduce the ASLSTM for the time-
series forecasting task, built upon the ALIF model introduced in
Section III-B. The ASLSTM introduces supplementary gating
mechanisms, similar to standard LSTM [25] and SLSTM [16],
enhancing the network’s spatial-temporal dynamics.

The ASLSTM can be formulated as

ct = σ(f t)⊗ ct−1 + σ(it)⊗ tanh(gt),

ht = σ(ot)⊗ tanh(ct),

vt = A(ht, xt, vt−1),

ζ = O(vtf , xtf ),

st = H(vt),

with

it = Wix
t + Uiv

t−1,
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Fig. 4. Elaborate on the mechanism by which astrocytes diffuse membrane
potentials and illustrate the integration process with the LIF neurons within the
ASLSTM.

f t = Wfx
t + Ufv

t−1,

gt = Wgx
t + Ugv

t−1,

ot = Wox
t + Uov

t−1, (7)

where it, ot, f t, and gt are inputs of the input gate, output gate,
forget gate, and cell state, respectively. The signals are consistent
with the standard LSTM, where σ denotes the sigmoid function,
tanh denotes the tangent hyperbolic function, and ⊗ is the
Hadamard product. H is the Heaviside step function formulated
in Eq. 6c. O(·) is the output neurons, which can be formulated
by

O(vtf , xtf ) = κvtf + f(xtf + J(t− 1, t)), 0 < κ < 1.
(8)

A(·) is the state update function of the ALIF neuron, which can
be written as

A(ht, xt, vt−1) = α(1− st−1)ht + f(xt + J(t− 1, t)), (9)

J(t− 1, t) represents the diffusion across various time steps
within the same neuron.

Fig. 4 represents the internal architecture and synaptic con-
nections within the ASLSTM. The inputs of ASLSTM propagate
exclusively along the temporal dimension, rather than spatially,
at each time step. Upon reaching the final time step, the output
neuron is engaged to emit membrane potentials that represent the
continuous values. The region enclosed by the red dashed line
in Fig. 4 is the standard LSTM cell. Due to the presence of LIF
neurons within the ASLSTM cell, the inputs to ASLSTM com-
prise three parts: long-term memory ct−1, membrane potential
vt−1, and spikes st−1.

D. Training Details

The loss L is constituted by two distinct components: the
angular velocity loss La and the linear velocity loss Ll:

L = La + Ll

Li =
1

2

√
eTi ei, i ∈ {a, l} (10)

where ea = ωgt − ω, el = lgt − l, ω is the angular velocity and
l linear velocity, respectively. Both angular and linear velocities
are defined within the three-dimensional Euclidean space R3.

Since there is a substantial numerical value disparity between
angular and linear velocities. The gradients associated with them
vary by several orders of magnitude throughout the training
process. Consequently, we implemented a dynamic scaling of
the loss functions for angular and linear velocities to mitigate
this discrepancy. The dynamic scaling balanced the influence of
angular and linear velocities within the loss function.

As shown in Fig. 2, our training process is multi-step. Firstly,
the event data is partitioned into n chronological bins. These
events are assigned to different channels according to their
polarity. Secondly, the polarity-divided events are subsequently
converted into a time series spike tensor [T,B,C × n,H,W ].
Finally, these time-series spikes are fed into the SNN module
to estimate the velocities [B,n, 6], where the angular velocities
are represented by Euler angles.

In the computational process, we sequentially allow each layer
to complete its computations at the time step. The resultant
information is passed on to the subsequent layer only after each
layer has fully processed the data at a given time step. The SNNs
are trained by the Adam optimizer within the public PyTorch
framework [26].

IV. EXPERIMENTS

In the experimental section, we designed three experiments
to evaluate our NeuroVE framework. Initially, we evaluated
the performance of the ALIF neurons and the ASLSTM in
nonlinear regression and time-series forecasting experiments.
Subsequently, we evaluated the performance of NeuroVE in
the linear-angular velocity estimation experiments. Finally, real-
world experiments confirmed the effectiveness of NeuroVE.

A. Experimental Configuration

In this section, we detail the experimental configurations for
the three experiments and the metrics employed to evaluate the
results.

1) Nonlinear Regression and Time-Series Forecasting Exper-
iments: The nonlinear regression and time-series forecasting
experiments aim to assess the ASLSTM’s ability to perform
numerical precision and time-series forecasting. The existing
studies on SNNs for nonlinear numerical regression experi-
ments frequently employed simple configurations. In addition,
the proficiency of SNNs in time-series prediction is inferior
to ANNs. To this end, we have designed an experiment to fit
the y = sin(x) curve, encompassing numerical regression and
predictive components.

We randomly generated 100 instances of sin(x+ di), each
incorporating phase offsets di, allocating 97 sequences for train-
ing and reserving 3 sequences for validation. Furthermore, the
whole training dataset is comprised of 1000 time steps. The
experiment fits the data across the initial 0 to 1000 time steps
and forecasts the outcomes for the subsequent 1000 to 2000 time
steps.

Furthermore, we undertook a comparative analysis of the
firing frequencies across various neuron types when subjected
to identical random signals to demonstrate the dense firing
frequency feature of ALIF neurons.

2) Linear-Angular Velocity Estimation Experiments: The
linear-angular velocity estimation experiments is specifically
designed to evaluate the framework’s performance in accurately
determining velocities from event camera data. This evaluation
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was performed on two distinct datasets: the MVSEC dataset [27]
and a synthetic dataset generated by the CARLA simulator [28],
which provides a controlled environment for testing. For the
training phase, we used the out_door_day2 dataset and a subset
of the out_door_day1 dataset. Following the training phase, we
evaluated the model’s performance in an unused portion of the
out_door_day1 dataset.

3) Real-World Experiments: In real-world experiments, our
objective is to confirm the efficacy of our proposed NeuroVE
framework on the robot. To this end, we affixed an event camera
to a four-wheeled robot and tracked its movement along a
corridor within a room (see Fig. 7). We recorded a total of four
distinct trajectories during the experiments to demonstrate the
performance of NeuroVE. The outputs from the multi-sensor
fusion algorithm were used as the ground truth for velocity
estimation. To guarantee the precision of our evaluation, we sys-
tematically sampled a subset of each trajectory for a validation
set, deliberately excluded from the training phase.

4) Metrics: In order to comprehensively evaluate the per-
formance of the proposed NeuroVE framework, we employ
different metrics to quantify the performance in the experi-
ments. We have selected the Root Mean Square Error (RMSE)
and Relative Error (RE) as the primary metrics for evaluating
model performance. Additionally, we introduced the Continu-
ous Ranked Probability Score (CRPS) [29] as a supplementary
metric to provide a more comprehensive evaluation of model
performance in time-series forecasting tasks. The formulas are
shown as follows,

RMSE(x) =

√√√√ 1

n

n∑
i

‖xi
gt − xi‖2,

RE(x) =
1

n

n∑
i

‖xi
gt − xi‖
xi
gt

, (11)

where xi
gt is the ith ground truth, xi is the ith prediction value.

B. Results of Nonlinear Regression and Time-Series
Forecasting Experiments

In the experiments, we evaluate our method and compare its
performance with existing pipelines listed as follows:
� ASLSTM (Ours): The method proposed in Section III-C,

and the network streamlined architectural design, compris-
ing two layers of ASLSTM cells.

� ASLSTM-w/o: The proposed networks utilize LIF neu-
rons [7] in place of ALIF neurons, thereby excluding the
astrocyte-inspired diffusion mechanism.

� LTC [30]: The SNNs incorporate liquid time-constant spik-
ing neurons designed to address the challenges associated
with long-term time series prediction.

� SLSTM [16]: The SLSTM proposed for regression using
spiking neural networks.

We begin by discussing the numerical experiment part, depict-
ing the 0-1000 time steps in Fig. 5. The numerical experiment
part shows the smoothest curve of our results. In contrast to
other methods, they exhibit fluctuations due to SNN numerical
instability. Table I further illustrates the significant improvement
of our method, with an RMSE† of approximately 0.3, markedly
better than the 0.8 of SLSTM and 3 of LTC. Since the sin(x)
oscillates between an amplitude range of -1 to 1, the resulting

Fig. 5. The graph of the results of numeric regression and time-series fore-
casting for y = sin(x).

TABLE I
RMSE† FOR NUMERICAL REGRESSION TASKS

TABLE II
RMSE FOR TIME-SERIES FORECASTING TASKS

TABLE III
CRPS FOR TIME-SERIES FORECASTING TASKS

RMSE is inherently small. To facilitate a clear comparison, we
introduced RMSE†, which magnified 1000 times from RMSE.

In the time-series forecasting part, depicted in the 1000-2000
time steps of Fig. 5. The experimental results indicate that
most alternative methods struggle with time-series forecasting
during 1000-2000 time steps. Table II quantitatively confirms
our method’s superior performance in time-series forecasting.
To further evaluate the performance of our model in time series
forecasting tasks, we introduced the CRPS as a performance
metric. These evaluation results are presented in Table III. It is
clear that our proposed method significantly outperforms other
comparative methods in time-series forecasting tasks. Fig. 5
exposes other methods’ deficiencies in time-series forecasting
capabilities. Fig. 6 indicates that our method improves SNN’s
numerical stability through increased firing frequency.
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Fig. 6. Results of neuronal firing frequency.

TABLE IV
EVALUATION ON MVSEC DATASET

TABLE V
EVALUATION ON SYNTHETIC DATASET

C. Results of Linear-Angular Velocity Estimating Experiments

In this section, our primary objective is to validate the efficacy
of brain-inspired methodologies in the estimation of velocities
and angular velocities from event cameras. We have selected
the MVSEC dataset, which offers accurate ground truth of
trajectory. By differentiating these poses, we obtain the ground
truth of linear and angular velocities, which provide a benchmark
for model evaluation. Our methods and baseline methods are
listed as follows:
� NVE (Ours): NeuroVE is proposed in Section III.
� NVE-w/o: The method employs LIF neurons [7] instead

of ALIF neurons.
� SNN-ANG [11]: The approach uses SNN to implement

angular velocity regression.
During the training phase, we do not utilize all the trajectories

for model training. Instead, we allocate a portion for training
and reserving another for the validation and testing phases. Ulti-
mately, we employ the RMSE and RE as the primary evaluation
metric.

The experimental results are presented in Tables IV and V.
Our method shows better performance in estimating linear and
angular velocities, outperforming other advanced approaches.
In Table IV, our method demonstrates superior performance
over other approaches, achieving an RMSE∗ of 0.11 for angular

Fig. 7. Illustration of the robot platform, scene, and results of linear velocity
estimation in the real-world experiments.

velocity and 0.12 for linear velocity. The RMSEs of angular
and linear velocities are not balanced. Most of the samples in
the dataset exhibit linear motion, resulting in very small values
of mean angular velocity. The RMSE∗ represents the RMSE of
angular velocity by a factor of 100.

In addition, we conducted numerous randomized experiments
within the MVSEC dataset, which yielded results indicating that
NeuroVE realizes a performance improvement of approximately
60% in velocity estimation.

D. Results of Real-World Experiments

Fig. 7(c) illustrates the estimation of linear velocity. The
coordinate system is built on the camera frame, with the Z-axis
aligned directly in front of the camera, the X-axis pointing to the
ground, and the Y-axis established according to the right-hand
rule. The experiment’s evaluation phase yielded an RMSE of
0.08 and RE of 0.99 for angular velocities, whereas the linear
velocities demonstrated an RMSE of 0.21 and RE of 0.23. This
result exhibits the effectiveness of NeuroVE on real robots.
Furthermore, the vehicle primarily moves in a straight line,
rarely requiring steering, which results in angular velocities that
are typically much closer to zero. Consequently, while the RMSE
for angular velocity is smaller when compared to linear velocity,
the RE is notably higher for angular velocity. Furthermore, the
average power consumption for the NeuroVE model running
on neuromorphic chips (Lynxi-HS110) was 1.3 W, while on the
Xavier NX it was 3.6 W. NeuroVE’s power consumption on the
Xavier NX is nearly 2.77 times higher than on neuromorphic
chips.
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V. CONCLUSION

This letter introduces NeuroVE, a brain-inspired framework
designed to estimate linear and angular velocities by mimicking
the vision motion circuit. It captures the motion data from an
event camera and employs mechanisms that mimic the function
of LS and AS cells to process the information effectively. Firstly,
we encode temporal information into spikes to simulate time
cells in the initial phase. Subsequently, we introduce ALIF neu-
rons to improve the representation precision of SNNs. Finally,
we introduce the ASLSTM structure incorporated with ALIF
neurons to enhance the accuracy of time-series forecasting.
Our method has demonstrated its superior velocity estimation
accuracy through synthetic datasets and real-world robot exper-
iments. Moreover, numerical experiments have substantiated the
advantages of NeuroVE in addressing numeric and time-series
forecasting issues in SNNs. The NeuroVE framework provides
a novel solution to the essential challenge of ego-velocity esti-
mation, unleashing the potential of neuromorphic computing to
address self-motion estimation problems.

REFERENCES

[1] D. Spalla, A. Treves, and C. N. Boccara, “Angular and linear speed cells in
the parahippocsampal circuits,” Nature Commun., vol. 13, no. 1, Apr. 2022,
Art. no. 1907.

[2] H. Eichenbaum, “Time cells in the hippocampus: A new dimension for
mapping memories,” Nature Rev. Neurosci., vol. 15, no. 11, pp. 732–744,
Nov. 2014.

[3] Z. Yang et al., “A vision chip with complementary pathways for open-
world sensing,” Nature, vol. 629, no. 8014, pp. 1027–1033, May 2024.

[4] G. Gallego et al., “Event-based vision: A survey,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 44, no. 1, pp. 154–180, Jan. 2022.

[5] Y. Guo, X. Huang, and Z. Ma, “Direct learning-based deep spiking neural
networks: A review,” Front. Neurosci., vol. 17, 2023, Art. no. 1209795.

[6] K. Roy, A. Jaiswal, and P. Panda, “Towards spike-based machine in-
telligence with neuromorphic computing,” Nature, vol. 575, no. 7784,
pp. 607–617, Nov. 2019.

[7] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal backprop-
agation for training high-performance spiking neural networks,” Front.
Neurosci., vol. 12, 2018, Art. no. 331.

[8] L. Giantomasi et al., “Astrocytes actively support long-range molecular
clock synchronization of segregated neuronal populations,” Sci. Rep.,
vol. 13, no. 1, Mar. 2023, Art. no. 4815.

[9] N. Iannella and A. D. Back, “A spiking neural network architecture
for nonlinear function approximation,” Neural Netw., vol. 14, no. 6-7,
pp. 933–939, 2001.

[10] C. Lv, Y. Wang, D. Han, X. Zheng, X. Huang, and D. Li, “Efficient and
effective time-series forecasting with spiking neural networks,” in Proc.
41st Int. Conf. Mach. Learn., 2024, pp. 33624–33637.

[11] M. Gehrig, S. B. Shrestha, D. Mouritzen, and D. Scaramuzza, “Event-
based angular velocity regression with spiking networks,” in Proc. 2020
IEEE Int. Conf. Robot. Automat., 2020, pp. 4195–4202.

[12] J. Cuadrado, U. Rançon, B. R. Cottereau, F. Barranco, and T. Masquelier,
“Optical flow estimation from event-based cameras and spiking neural
networks,” Front. Neurosci., vol. 17, 2023, Art. no. 1160034.

[13] H. Kamata, Y. Mukuta, and T. Harada, “Fully spiking variational au-
toencoder,” in Proc. AAAI Conf. Artif. Intell., Jun. 2022, vol. 36, no. 6,
pp. 7059–7067.

[14] S. Kim, S. Park, B. Na, and S. Yoon, “Spiking-YOLO: Spiking neural
network for energy-efficient object detection,” in Proc. AAAI Conf. Artif.
Intell., Apr. 2020, vol. 34, no. 7, pp. 11270–11277.

[15] J. K. Eshraghian, X. Wang, and W. D. Lu, “Memristor-based binarized
spiking neural networks: Challenges and applications,” IEEE Nanotech-
nol. Mag., vol. 16, no. 2, pp. 14–23, Apr. 2022.

[16] A. Henkes, J. K. Eshraghian, and H. Wessels, “Spiking neural networks
for nonlinear regression,” Roy. Soc. Open Sci., vol. 11, no. 5, 2024,
Art. no. 231606.

[17] E. Mueggler, G. Gallego, H. Rebecq, and D. Scaramuzza, “Continuous-
time visual-inertial odometry for event cameras,” IEEE Trans. Robot.,
vol. 34, no. 6, pp. 1425–1440, Dec. 2018.

[18] S. Bryner, G. Gallego, H. Rebecq, and D. Scaramuzza, “Event-based,
direct camera tracking from a photometric 3D map using nonlin-
ear optimization,” in Proc. IEEE Int. Conf. Robot. Autom., 2019,
pp. 325–331.

[19] G. Gallego, H. Rebecq, and D. Scaramuzza, “A unifying contrast maxi-
mization framework for event cameras, with applications to motion, depth,
and optical flow estimation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., 2018, pp. 3867–3876.

[20] X.-Z. Peng, W. Xu, J. Yang, and L. Kneip, “Continuous event-line con-
straint for closed-form velocity initialization,” in Proc. Brit. Mach. Vis.
Conf., 2021.

[21] X. Li, Y. Zhou, R. Guo, X. Peng, Z. Zhou, and H. Lu, “Spatio-temporal
calibration for omni-directional vehicle-mounted event cameras,” IEEE
Robot. Automat. Lett., vol. 9, no. 3, pp. 2311–2318, Mar. 2024.

[22] X. Lu, Y. Zhou, J. Niu, S. Zhong, and S. Shen, “Event-based visual inertial
velometer,” in Proc. Robotics: Sci. Syst., 2024.

[23] H. Zheng, Y. Wu, L. Deng, Y. Hu, and G. Li, “Going deeper with directly-
trained larger spiking neural networks,” in Proc. AAAI Conf. Artif. Intell.,
May 2021, vol. 35, no. 12, pp. 11062–11070.

[24] D. Wheatley, “Diffusion theory, the cell and the synapse,” Biosystems,
vol. 45, no. 2, pp. 151–163, 1998.

[25] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[26] A. Paszke et al., “Automatic differentiation in PyTorch,” in Proc. Neural
Inf. Process. Syst. Workshops, 2017.

[27] A. Z. Zhu, D. Thakur, T. Ozaslan, B. Pfrommer, V. Kumar, and K.
Daniilidis, “The multivehicle stereo event camera dataset: An event camera
dataset for 3D perception,” IEEE Robot. Autom. Lett., vol. 3, no. 3,
pp. 2032–2039, Jul. 2018.

[28] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA:
An open urban driving simulator,” in Proc. Conf. Robot. Learn., 2017,
pp. 1–16.

[29] R. Pic, C. Dombry, P. Naveau, and M. Taillardat, “Distributional regression
and its evaluation with the CRPS: Bounds and convergence of the minimax
risk,” Int. J. Forecasting, vol. 39, no. 4, pp. 1564–1572, 2023.

[30] B. Yin, F. Corradi, and S. M. Bohte, “Accurate online training of dynam-
ical spiking neural networks through forward propagation through time,”
Nature Mach. Intell., vol. 5, no. 5, pp. 518–527, May 2023.

Authorized licensed use limited to: Tsinghua University. Downloaded on May 03,2025 at 03:58:50 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


