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An Optical Neuromorphic Sensor with High Uniformity and
High Linearity for Indoor Visible Light Localization

Shuai Zhong,* Jiachao Zhou, Fangwen Yu, Mingkun Xu, Yishu Zhang,* Bin Yu,
and Rong Zhao*

The visible light localization system holds great promise as a highly accurate
indoor positioning method. However, it still suffers deficiencies including
high latency and power consumption, and large area cost. To address these
issues, a high energy efficient spiking localization system inspired by the
biological spatial representation system is presented. This system utilizes an
optical neuromorphic sensor, consisting of a compact NbOx-based threshold
switching memristor and a photoresistor. The key lies in the system’s ability
to convert analog light information into electrical spikes, resembling the
behavior of sensory neurons, which enables the encoding of light illuminance
through spiking frequency. Consequently, the system achieves high
uniformity, high linearity (≈10%), and high sensitivity (≈1.1 kHz Lux−1 and
≈72.7 kHz cm−1 for light illuminance and distance detection, respectively),
indicating its potential suitability for visible light localizations. By leveraging a
spiking neural network classifier, the system successfully distinguishes
locations with different illuminances. After 150 epochs, it achieves an
accuracy of 97%, showcasing the feasibility of using the spiking localization
system in real-world applications. The approach of spike-based light
positioning is a leap forward toward the development of future compact,
highly energy-efficient visible light localization systems.

1. Introduction

Indoor location-based services (ILBS) have garnered increasing
interest because of their wide application in various scenarios,
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such as museum, hospital, and shop-
ping mall.[1,2] These services not only fa-
miliarize users with their surroundings
immediately, but also enable the deliv-
ery of accurate commercial services when
combined with other technologies. While
Global Positioning System is the domi-
nant approach for localization with mer-
its of wide coverage, its signals get at-
tenuated by indoor structures like walls
and ceilings, and multipath distortion in
indoor settings, [3] which impacts accu-
racy and stability of positioning. This lim-
itation calls for alternative solutions, and
considerable efforts have been devoted to
developing indoor localization strategies
using wireless communication methods,
for example, ultra-wideband, radio fre-
quency identification, Wi-Fi signal, Blue-
tooth, or other methods.[4–6] However,
these methods have shortcomings in
terms of accuracy, cost, and low band-
width.

To overcome these challenges, a
promising indoor localization system
based on visible light communication

(VLC) has been introduced due to the merits of low cost, high
positioning precision, wide bandwidth, and long service life.[7,8]

The visible light localization system (VLLS) generally includes
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Figure 1. Conventional localization system, biological spatial localization system and our bio-inspired proposed localization system. a) For conventional
localization system, external stimuli are received by the sensor and transduced into spikes by the analog-to-digital converter module. Then, a fingerprint
map is obtained after data processing through memory/processors. b) Light information is first perceived by the eyes in biological spatial localization
system and then converted into spikes via afferent neuron. These spikes will be sent to hippocampus to active the place cells. The spike frequency of
the targeted area is higher compare to that of other areas. c) Our proposed VLLS consists of an optical neuromorphic sensor and a SNN classifier. The
optical neuromorphic sensor receives the light information and transduces it into electrical spikes. The output spikes are subsequently fed into the SNN
for recognition.

two main components: transmitter and receiver. The transmit-
ter serves as the light source with or without modulation, while
the receiver comprises photodiodes for light collection and an
analog-to-digital converter for signal conversion for further pro-
cessing by conventional computer.[9] However, current signal
conversion circuits hold some drawbacks, such as large hardware
area, high power consumption and latency. Additionally, mas-
sive data processing through the von Neumann architecture in-
evitably increases power consumption and reduces computing
efficiency because of the well-known “memory wall”.[10,11] There-
fore, there is a pressing need to develop VLLS solutions that pro-
cess data in a more energy-efficient way, especially in future data-
intensive circumstances.

Designing efficient VLLS can take inspiration from the bio-
logical spatial representation system (BSRS).[12,13] The BSRS pro-
cesses external stimuli by converting them into electrical spikes,
which are then transmitted to the hippocampus for spatial mem-
ory and representation.[14] Specifically, receptors encode mul-
timode sensory cues into spikes,[15] serving as drivers to acti-
vate hippocampal neurons, known as place cells.[16,17] Differ-
ent place cells fire when the person locates in different posi-
tions, enabling humans to navigate their environment effectively.
Such highly parallel and energy efficient system outperforms
current positioning technologies in processing intensive real-
time data, especially in complex surroundings. The potential to
build an energy-efficient VLLS system arises from the insights of
the BSRS. Although previous works have explored artificial sen-
sory system,[18–20] artificial afferent/efferent nerve,[21–26] and elec-

tronic skin,[27–29] a bio-inspired artificial VLLS system with high
energy efficiency remains elusive.

Here, we report a spike-based VLLS system comprising an op-
tical neuromorphic sensor and a spiking neural network (SNN).
The optical neuromorphic sensor, built on an NbOx-based thresh-
old switching (TS) memristor and a photoresistor, receives the ex-
ternal light information and converts them into electrical spikes.
The spike frequency is found to correlate significantly with illu-
minance or distance, making it suitable for position encoding.
Notably, the optical neuromorphic sensor exhibits competitive
parameters, including uniformity, linearity (10%), and sensitiv-
ity (1.1 kHz Lux−1 or 72.7 kHz cm−1). To validate the system’s
effectiveness, we coupled optical neuromorphic sensor with an
SNN classifier. The system successfully discriminated positions
with different illuminance levels, achieving 97% accuracy after
150 epochs. This work showcases the great potential of optical
neuromorphic sensors for high energy-efficient VLLS and serves
as a driving force for the development of ILBS.

2. Results and Discussion

Figure 1a illustrates the workflow of the conventional VLLS.
The process involves signal transduction and processing, lead-
ing to the creation of a fingerprint map that reflects the real
environment. The fingerprint technique, widely-used in VLLS,
labels locations based on distinct features or characteristics of
signals.[30] These features can include time difference of arrival,
time of arrival, angle of arrive, angle difference of arrival, and re-
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ceived signal strength (RSS). Each specific feature corresponds to
a particular position in the environment. The fingerprint localiza-
tion process comprises two phases: offline signal collection and
online positioning. In the offline stage, light signals from various
positions are received, processed, and stored, resulting in the
creation of a fingerprint map. In the online stage, localization is
performed by comparing the post-processed signal with the data
in the fingerprint map. Figure 1b depicts the physiological path
of the BSRS, where various sensory signals are transmitted to
the hippocampus in a spiking fashion and then fused to activate
place cells. Utilizing spike-based processing and computation,
the BSRS operates with high energy efficiency. By recording
the neural behavior of place cells, a cognitive map is obtained,
showing the relationship between cell firing rates and positions.
It is important to note that while a place cell may exhibit similar
firing behavior in different surroundings, the highly sensitive
cognitive maps vary from one location to another.[16] Figure 1c
presents our experimental design of a high energy efficient
VLLS that is akin to the BSRS. In this design, a light emitting
diode (LED) serves as the stimulus source, a photoresistor acts
as the receptor, a TS memristor functions as the analog-to-spike
transducer, and a SNN is used to process the converted spike
signals. Through investigating the spiking behavior induced by
different light intensities at different positions, an offline spike-
based fingerprint map is accomplished. The online SNN enables
precise position identification by sorting the spike signals.

Due to its high scalability and easy integration, it has been re-
ported that memristors can be used for neuromorphic sensors.
However, the features such as high uniformity, high linearity—
all of which are essential for a neuromorphic sensor—is ignored.
Evidently, all these properties are strongly correlated to the perfor-
mance of memristor, which we first optimized in terms of uni-
formity, power consumption and compatible with external sen-
sor via structure and material engineering. Figure 2a presents
the device structure of the memristor, featuring a dielectric NbOx
layer sandwiched between Pt electrodes. To analyze the elemen-
tal distribution and cross-sectional properties, energy-dispersive
X-ray spectroscopy (Figure S1, Supporting Information) was con-
ducted. The electrical measurement of the memristor is depicted
in Figure 2b. An abrupt transition from a high resistance state
(HRS) to a low resistance state (LRS) occurs when the applied
voltage exceeds the threshold voltage (Vth,≈1.77 V). Upon the
voltage dropping below the holding voltage (Vhold,≈1.63 V), the
memristor automatically returns to the HRS. A compliance cur-
rent (Icc) of 0.7 mA is clamped to prevent the device’s hard break-
down. The memristor maintains its threshold switching prop-
erties after 100 cycles, showing good repeatability. The electrical
uniformity of the device is also commendable, with a coefficient
of variation (CV) of 0.54% for Vth and 0.59% for Vhold (Figure S2,
Supporting Information), which is rival to previous reports, as
shown in Table S1 (Supporting Information). Here, the CV is
defined as CV = 𝜎/𝜇, where 𝜎 is the standard deviation and 𝜇

is the mean value. The TS phenomenon of the NbOx memris-
tor can be well elucidated using the Mott transition.[31,32] A de-
tailed explanation can be found in Figure S3 (Supporting Infor-
mation). The high uniformity can be probably ascribed to the for-
mation of stable conducting filament during threshold switching
due to the structure and stoichiometry engineering. Additionally,
the switch speed of the TS memristor is measured, with switch-

on and switch-off speed is ≈200 ns at 2 V and ≈80 ns at 1.4 V,
respectively, in line with the Vth and Vhold values observed in DC
testing (Figure S4, Supporting Information).

By employing the TS memristor in conjunction with an exter-
nal resistor, a transducer that can convert analog signals to spikes
is fabricated, as displayed in Figure 2c. To ensure proper func-
tionality, the resistor value should fall within the range of RLRS
and RHRS (RLRS< Rext<RHRS). At the initial stage, since the RHRS
is larger than the Rext, most of the applied voltage drops across
the memristor, resulting in the charging of capacitor. When the
memristor switches from HRS to LRS, as the RLRS is smaller than
the Rext, the applied voltage on the device decreases immediately,
initiating a discharge of the capacitor. The device returns to HRS
once the voltage drops below Vth, starting a new charge-discharge
cycle. Briefly, the following two equations must be satisfied:

RHRS×Vapplied

RHRS+Rext
≥ Vth (1)

RLRS×Vapplied

RLRS+Rext
≤ Vhold (2)

Figure 2d illustrates a typical dynamic behavior of the trans-
ducer. Triggered by a voltage pulse, a current spike train is gener-
ated. The frequency of these spikes is expected to be governed by
the external resistor (see Figure 2e; Figure S5, Supporting Infor-
mation). There exists an inverse relationship between the resistor
and spike frequency: as the Rext increases, the spike frequency de-
creases. Besides, the spike frequency is also affected by the volt-
age pulse amplitude (see Figure 2f). The larger pulse amplitude
produces a higher spike frequency. These attributes are closely
related to the variations in charging/discharging time, which are
strikingly dependent on the external resistor, applied voltage, and
capacitor. The ideal spike frequency can be theoretically deter-
mined by the following equation:[33]

f = 1

RextClog( Vhold−V

Vth−V
)

(3)

where C is the total capacitor, Rext is the external resistor and V is
the applied voltage.

In addition, the range of applied voltage is primarily deter-
mined by the connected resistor, as demonstrated in Figure S6
(Supporting Information). When using a smaller resistor, the
voltage required to trigger spikes decreases, aligning well with
the voltage divider rule. Ensuring the uniformity of the trans-
ducer is of significant concern. Figure 2g demonstrates the re-
peatable spiking behavior under the same pulse amplitude, and
magnified curves of specific cycles are manifested in Figure 2h. It
can be found that no obvious degradation is detected, indicating
its robustness. The effect of pulse amplitude on the spiking uni-
formity is further investigated. The device exhibits excellent re-
peatability under various voltages (see Figure 2i; Figure S7, Sup-
porting Information). These results verify that the TS memristor-
based transducer with high uniformity and reliability is a promis-
ing candidate for building neuromorphic sensors capable of
sensing stimuli and converting signals.

The VLLS is responsible for sensing visible light and convert-
ing it to spikes. To achieve this, we have replaced the resistor
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Figure 2. Electrical investigation of NbOx-based TS memristor and the transducer. a) Schematic of the device structure and its transmission electron
microscope (TEM) image. b) DC sweeping of device with 100 cycles. c) Illustration of designed circuit to implement the spiking generation. d) Spiking
behavior under certain series resistance and applied voltage. e) Spike frequency modulation as a function of series resistance. f) Effect of the applied
voltage on the spike frequency when the series resistance is constant. g) Uniformity examination of the spike performance. After 100 tests, the spike
behavior is repeatable, indicating the reliability of the system. h) A magnified spike curve of cycle 1, cycle 50 and cycle 100. i) Uniformity examination of
the spike performance under different applied voltages, further suggesting its uniform electrical performance.

with a photoresistor, which allows modulation of resistance based
on the light illuminance, thus creating an optical neuromorphic
sensor (Figure S8, Supporting Information). As previously men-
tioned, the change of resistance leads to variations of spike fre-
quency, indicating that spike behavior is regulated by illuminance
when a photoresistor is used. Figure 3a shows the relationship
between spike frequency and applied voltage under different il-
luminances of daylight. When illuminance is constant, spike fre-
quency is found to proportional to the applied voltage, which
agrees with the trend illustrated in Figure 2. An important obser-
vation is that higher illuminance results in a lower threshold volt-
age required to trigger spikes, owing to the photoresistor’s lower
resistance under brighter conditions. These characteristics make
the optical neuromorphic sensor promising for illuminance dif-
ferentiation. VLC-based RSS is a commonly used for ILBS by es-
timating the distance between the light source and positions. The
emitted light strength experiences attenuation with increasing

distance, and light reflection is not considered in this method.
Therefore, location identification is achieved by examining the
light strength. Our proposed optical neuromorphic sensor can
effectively distinguish light signals and convert them to spikes,
enabling location differentiation. As illustrated in Figure 3b, posi-
tion “A” and position “B” are two spots located in the area that illu-
minance is uneven distributed, which delineates the illuminance
distribution shaped by the space design and layout in real scene.
To discriminate, the spiking dynamics of the optical neuromor-
phic sensor at each point is investigated, as shown in Figure 3c.
It is obvious that under the same applied voltage, the spike fre-
quency and amplitude of position “A” are higher than that of po-
sition “B”. By analyzing these spike signals, the positions “A” and
“B” are distinctly separated. In order to make this phenomenon
more evident, a Fast Fourier Transform (FFT), which converts
a signal from its original domain, such as time or space, into a
representation in the frequency domain, was further conducted

Adv. Sensor Res. 2024, 3, 2300197 2300197 (4 of 8) © 2024 The Authors. Advanced Sensor Research published by Wiley-VCH GmbH
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Figure 3. Transduction performance of optical neuromorphic sensor. a) Output spike frequency of optical neuromorphic sensor as a function of applied
voltage under various illuminance conditions of natural light. b) Schematic of the situation where optical neuromorphic sensor can be used for position
classification. c) Spiking behavior of optical neuromorphic sensor when placed at two locations with different illuminances. For the positions that receive
diverse illuminances, the differentiation is feasible according to the output spiking dynamics of optical neuromorphic sensor. d) Fast Fourier Transform
spectra of spike signal presented in Figure 3c. It can be easily found that the output spikes at two locations with various illuminances pose quite different
spike frequency and amplitude. e) Output spike frequency of optical neuromorphic sensor as a function of applied voltage under various illuminance
conditions of monochromic green light. f) Impact of distance between green light source and optical neuromorphic sensor on the illuminance it receives.
g) Spiking behavior of optical neuromorphic sensor at four positions with varied distances from the light source.

(Figure 3d). It is apparent that the frequency peaks are well sepa-
rated, indicating that it is feasible to discriminate positions with
distinct light intensities through analyzing the collected spikes.
Currently, the VLLS are equipped with LEDs; thus, we further
examine the spike performance of the optical neuromorphic sen-
sor under green LEDs (Figure 3e). The illuminance of the light
is controlled by tuning light focusing while the distance between
the light source and the photoresistor remains fixed (Figure S9).
Here, the LED and the photoresistor are on the vertical line. Simi-
lar tendency is discerned with that under daylight, although there
is significant diversity in the generated spike frequencies. This
difference is attributed to the varying absorption efficiency of the
photoresistor for daylight and monochrome green light. To in-
corporate position information, the illuminance is modified by
altering the distance between the LED and photoresistor. The il-
luminance becomes weaker as the distance increases, as demon-
strated in Figure 3f, suggesting that distance can be inferred from
illuminance, and hence, it can also be represented by the spikes.
We then evaluate the spiking behavior at different distances via
the optical neuromorphic sensor. Figure 3g presents the spike
frequency of optical neuromorphic sensor at distance of 34.5,
32.5, 30.5, 29 cm, respectively. Notably, decreasing the distance
will increase the output spiking frequency since short distance
signifies higher illuminance, which lowers the resistance of pho-
toresistor and makes the optical neuromorphic sensor generate
higher spike frequency. These results demonstrate that analyzing
the spiking performance allows recognition of different locations
with varying illuminance levels.

In this study, we assess the sensing properties of the optical
neuromorphic sensor, focusing on its sensitivity, uniformity, lin-
earity, and power consumption. Sensitivity, denoted as S =Δf/Δv,

measures the change of spiking frequency (Δf) relatives to vari-
ations in input variables (Δv). A higher sensitivity is desirable
for a sensor, and we achieve sensitivities of 1.1 kHz Lux−1 and
72.7 kHz cm−1 for illuminance and distance inputs, respectively.
These values far exceed those reported in previous studies.[22,26]

Notably, the sensitivity of the optical neuromorphic sensor relies
heavily on the applied voltage and can be further improved by
tuning the performance of the TS memristor and photoresistor
(Figure S10, Supporting Information). It is well known that the
uniformity governs the signal encoding accuracy and affects the
complexity of peripheral circuit design. The results of uniformity
examination of our optical neuromorphic sensor in under natural
and green light conditions are shown in Figure 4a,b. Good consis-
tency of spike frequency was maintained for the same light inten-
sity during 100 cycles, indicating robust light encoding capability.
Linearity and power consumption, two other crucial properties
of neuromorphic sensor, are also evaluated. The linearity of neu-
romorphic sensor describes how closely the actual spike output
aligns with the ideal spike output. While an ideal spike output
would form a straight line, various factors, such as material de-
fects or device variations, make achieving perfect linearity chal-
lenging in practical applications. The linearity is often expressed
as the percentage of nonlinearity, which can be characterized as

Nonlinearity =
Dout(max)

Outf .s
×100% (4)

where Dout(max) is the maximum output deviation of spikes, and
Outf.s is the full-scale output of spikes, as illustrated in Figure 4c.
By adopting the end-point linearity approach and establishing
the relationship between spike frequency and illuminance,
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Figure 4. Performance evaluation of optical neuromorphic sensor. Uniformity investigation of optical neuromorphic sensor under a) natural light and b)
green light. c) Schematic of linearity evaluation. The linearity is determined by the maximum output deviation and full-scale output of spikes. d) Power
consumption and linearity comparison. The power consumption is calculated by power consumption of the applied pulse and the number of generated
spikes and it can be found that our optical neuromorphic sensor shows competitive with pervious works.

our optical neuromorphic sensor exhibits a linearity of ≈10%,
surpassing that of other light-based neuromorphic sensors
(Figure 4c). Energy consumption per spike is also estimated
by dividing the power consumption of pulses by the number
of generated spikes, yielding an approximate 1.5 nJ per spike.
This is competitive with that reported in other works (see
Figure 4d).[22,26,34–39] To further reduce power consumption, we
believe device engineering and peripheral circuit design can be
employed. It is noteworthy that the linearity is influenced by the
operation voltage of the memristor and can be optimized through
sensor-memristor co-design (see Figure S11, Supporting Infor-
mation). More detailed comparison of this work with previous
work can be found in Table S2 (Supporting Information). To
sum up, our NbOx-based neuromorphic sensor shows outstand-
ing performance in terms of uniformity, energy consumption,
and linear encoding, enabling it a competitive candidate for
realization of high energy-efficient spike-based VLLS.

To verify the feasibility of the spike-based VLLS in real-world
scenarios, we conduct a localization recognition experiment
by integrating the SNN for signal processing. The architecture
used in the experiment can be found in Figure S12 (Supporting
Information). The above results have indicated that the distance
between a position and the light source governs the illuminance
received by that position, subsequently influencing the spike
behavior. In a pre-designed situation, positions with varying
illuminances and distances exhibit distinct spiking features.
Through detailed analysis, the illuminance/distance distribution

can be mapped to the distribution of spike frequency, allowing
us to infer position information by estimating the spiking fre-
quency, as shown in Figure 5a. For the localization recognition,
the SNN serves as a classifier as shown in Figure 5b. Our training
dataset consists of 400 samples, while 100 samples are used
for testing. The simulation results demonstrate a remarkable
accuracy of 97% after 150 epochs, indicating the clear distinction
of localization clues (Figure 5c) and the average output and
average firing rate during the neural network training is also
displayed to verify the results (Figure S13, Supporting Informa-
tion). The classification of the 100 test datasets are presented in
the confusion matrix shown in Figure 5d. The column denotes
the position information while the row shows the classification
results. The SNN classifier successfully differentiate locations
after 150 epochs. Further analysis about the training results,
detailed in Figure S14 (Supporting Information), support the
conclusion that our spike-based VLLS effectively encodes local-
ization through illuminance and achieves accurate recognition,
closely resembling the BSRS. It is worth noting our spike-based
VLLS with single neuromorphic sensor is most suitable for
indoor scenarios where the illuminance at each point or small
area is unique, since the illuminance is the key element that
determines the spiking behavior of VLLS. Such requirements,
to some extent, limit the application of the spike-based VLLS be-
cause current design involves only single neuromorphic sensor.
It can be envisioned that, by employing neuromorphic sensor ar-
ray with outstanding performance, coupling with other sensors,

Adv. Sensor Res. 2024, 3, 2300197 2300197 (6 of 8) © 2024 The Authors. Advanced Sensor Research published by Wiley-VCH GmbH
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Figure 5. Localization classification with spiking-based VLLS. a) Schematic of 4 positions under green light source for data collection. b) The spiking
signals represent 4 positions were fed into the SNN which composes of a linear mapping to map 25-dimentional firing rate patterns of spiking neurons to
4-dimentional class labels and implement the classification. c) Evolution of testing accuracy with epochs. After 150 training epochs, the testing accuracy
reaches 97%. d) Confusion matrix of simulated classification output versus expected output. The classification result after 150 epoch shows that the
positions can be well recognized.

designing, and optimizing the positioning algorithm and periph-
eral circuit, a more powerful neuromorphic sensor system can
be implemented and applied for complicated environment po-
sitioning. In brief, our work offers a conceptual and preliminary
validation to achieve the positioning in a neuromorphic manner
via emerging device, but more efforts are exceedingly required to
promote the development of neuromorphic positioning system.

3. Conclusion

In summary, a bio-inspired VLLS is reported for precise indoor
positioning by integrating an optical neuromorphic sensor and
SNN classifier. The optical neuromorphic sensor is designed us-
ing a TS memristor with high uniformity and stability, combined
with a photoresistor. This sensor can perceive light illuminance
and encode it via spikes simultaneously, eliminating the need for
conventional signal converters. This feature significantly reduces
hardware cost and power consumption. Moreover, the spiking
performance of optical neuromorphic sensor is highly depen-
dent on illuminance or the distance between the light source and
its position. This property enables the representation of location
through spike frequency, making the system suitable for accu-
rate indoor positioning. Importantly, the optical neuromorphic
sensor offers additional advantages, such as high uniformity,
high linearity, and high sensitivity. To enable precise position-
ing, the system employs an SNN classifier, which effectively dis-

criminates between four different positions under monochromic
green light. After 150 epochs, it achieves an accuracy of 97%.
The spike-based VLLS is highly compact, scalable, and energy-
efficient, opening a new avenue for the future development of
indoor location systems and positioning technology.

4. Experimental Section
Fabrication of NbOx Volatile Memristor and Electrical Measurement: The

photo lithography and life-off process were used for the patterning. An ad-
hesion layer Ti with a thickness of 5 nm was firstly deposited on the Si/SiO2
substrate. Then, 30 nm Pt layer bottom electrode was fabricated, followed
by the deposition of NbOx dielectric layer. The NbOx was obtained through
reactive sputtering with a total gas pressure of 20 mTorr. Finally, 30 nm Pt
top electrode was sputtered. All the electrical testing were performed us-
ing Agilent B1500A semiconductor parameter analyzer. The photodetector
was purchased commercially.

Materials Characterization: The sample was first prepared by focused
ion beam (FIB) technique with a dual-beam system (Zeiss). Before that,
a Pt protective layer was fabricated to avoid any damage during the cut-
ting treatment. Then, the sample was transferred to TEM system (Hitachi-
S5500) for elemental analysis such as imaging, elemental mapping, and
line scanning.

Training of the Spiking Neural Network (SNN): A spiking neural net-
work was designed to classify places with the inputs of spiking train gen-
erated by the light memristor device. It composes of a linear mapping to
map 25D firing rate patterns of spiking neurons to 4D class labels. The
spiking neuron is implemented based on the leaky integrate and fire (LIF)

Adv. Sensor Res. 2024, 3, 2300197 2300197 (7 of 8) © 2024 The Authors. Advanced Sensor Research published by Wiley-VCH GmbH
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model. All neurons are fully connected. The backpropagation algorithm
was used to train and update the connection weights. The loss function
was implemented based on the mean squared error (MSE).
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the author.
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