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Abstract—Indoor localization is important for a variety of
applications such as emergency response, shopping guide, and
location-based services. Localization based on smartphone in-
ertial sensors is one of the most widely-used indoor localization
techniques since it can provide continuous and real-time locations
without requiring additional infrastructure. However, it suffers
from the accumulated error problem, which can be addressed
by using sensory landmarks. In this paper, we first introduce the
concept of sensory landmarks, and then show how different types
of sensory landmarks can be detected. The method for estimating
the locations of sensory landmarks is also given.

Index Terms—Indoor localization, sensory landmarks, land-
mark recognition, inertial sensors, smartphone.

I. INTRODUCTION

Nowadays, indoor localization has attracted lots of attention

from both academia and industry because of its pervasive ap-

plication fields such as museum guide [1], emergency response

[2], personal task reminder [3], asset tracking [4], search and

rescue [5], advertising [6], [7], and location-enabled social

networking [8]. Researchers have proposed a number of indoor

localization solutions [9], [10], which differ from each other

in terms of positioning techniques used, coverage, accuracy

and cost of deployment and maintenance.

Inertial sensors-based method, also known as dead reck-

oning (DR), is one of the most widely-used localization,

navigation and tracking techniques. This is because it can

provide continuous real-time location estimation without the

requirement for any additional infrastructure, given an initial

location. The popularity of smartphones equipped with many

kinds of sensors such as accelerometer, gyroscope, barometer

and magnetometer has made the DR method become an

attractive solution for indoor localization [11], [12]. Never-

theless, the DR method suffers from the accumulated error

problem that its error increases over time, resulting in the

inappropriateness for long time tracking tasks. This means

that it needs to be periodically calibrated using other absolute

localization techniques such as WiFi [13], [14] and UWB [15].

However, these absolute localization techniques are not always

available and often impose extra cost on the deployment and

maintenance.

An effective solution to deal with the accumulated error of

DR is to make use of landmarks. Different from landmarks

in linguistics, cognitive science and geographic information

science [16], [17], a landmark here is defined as a location

point where at least one type of sensors present a distinctive,

stable, and identifiable pattern in the readings. Corners or

turns, for instance, compel users to change their walking di-

rection that can be captured by the gyroscope; a door imposes

users to change their motion states that can be sensed by the

accelerometer. These landmarks (e.g., doors, corners, turns,

elevators, stairs) are naturally distributed in indoor spaces,

and can be used to calibrate the accumulated error of the DR

method.

In this paper, we first propose the concept of sensory

landmarks, which are passively sensed by sensors (e.g., the

built-in smartphone sensors) without any human participation

or intervention. Then, we categorize the sensory landmarks and

show how to detect and recognize different types of sensory

landmarks in indoor environments. Finally, we introduce how

to estimate the locations of sensory landmarks, the accuracy

of which has a direct influence on the location accuracy of the

DR method.

II. DEFINITION OF SENSORY LANDMARKS

In the field of linguistics and cognitive science, a land-

mark is generally defined as everything that stands out of

the background, which is easily recognizable and memorable

[16]. For example, the Eiffel Tower is a globally known

landmark since it is unique, easily recognizable and has a

particular landscape; the Statue of Liberty is a landmark

as it has special meaning and can be seen from different

locations. Conventional landmarks can be classified into three

types: visual landmarks, cognitive landmarks, and structural

landmarks [18]. A visual landmark stands out due mainly

to its contrast with the surrounding environment, prominent

spatial location or easily memorable visual characteristics. A

cognitive landmark is a feature or object with typical meaning

or atypical characteristics. A structural landmark is defined as

the one that has an important role or location in the structure

of the space. However, these conventional landmarks exist in

outdoor environments and are usually used for wayfinding or

route directions, which require the user to find, identify and

verify them, resulting in unsuitability for indoor localization.

Therefore, we propose the concept of sensory landmarks

for the purpose of assisting indoor localization. A sensory
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landmark refers to a location point where at least one type of

sensors present a distinctive, stable, and identifiable pattern in

the readings. For instance, the accelerometer readings present

a particular change pattern when the user takes an elevator,

escalator, or goes upstairs or downstairs. A sensory landmark

must meet the following three requirements at the same time:

• Distinctiveness. The change pattern of sensor readings

must be distinctive at the sensory landmark. This feature

stipulates that the sensory landmark can be distinguishable

from sensor readings at other locations.

• Stability. A sensory landmark must be stable for a period

of time, which means that it has to be detected by some sensors

every time a user passes it. For example, a door is a sensory

landmark if the user has to change his or her motion states

every time he or she passes through the door. However, if

the door is sometimes open but sometimes closed, it cannot

be regarded as a sensory landmark since the corresponding

change pattern in sensor readings is unstable.

• Identifiability. A sensory landmark must be detectable

by one or more types of sensors at the location point. The

intuition of proposing the concept of sensory landmarks is

to free users from manually recognizing landmarks (e.g., vi-

sual landmarks, structural landmarks, or cognitive landmarks),

which is troublesome especially when the user is not familiar

with the environment.

Fig. 1: Types of sensory landmarks

III. DETECTION OF SENSORY LANDMARKS

Sensory landmarks can be categorized by the types of

sensors that are able to detect them, as shown in figure 1. So

far, we define nine types of sensory landmarks according to

these sensors that are built in most smartphones, namely GPS

(Global Positioning System), WiFi, NFC (Near Field Commu-

nication), accelerometer, gyroscope, barometer, audio, camera,

and magnetometer. With the development of sensor technol-

ogy, it is expected that more types of sensory landmarks will

become available for indoor localization. We regard location

points that meet the distinctiveness and identifiability feature

requirements as potential sensory landmarks, and introduce an

algorithm in section IV to verify their stability. Only location

points that satisfy the defined three feature requirements can

be taken as sensory landmarks. All the sensory landmarks can

be detected by checking where an abnormal change of one or

more types of sensors arises or where the user is forced to

perform certain activities or movements [19], [20].

A. GPS Landmarks

The status of GPS signal changes when a user enters or exits

a building or is at the vicinity of a window, as shown in figure

2. Therefore, an entrance or a window can be regarded as a

GPS landmark if it possesses the three characteristics defined

in section II. As a GPS landmark, the GPS sensor must be

able to detect a change in the number of visible GPS satellites

as the user passes or approaches it, e.g., from 3 to 0 or vice

versa.

Fig. 2: An example of GPS landmarks

B. WiFi Landmarks

The WiFi landmarks can be detected based on the similarity

of signal strength received from WiFi access points. Let A1

and A2 represent the sets of WiFi access points (APs) whose

signals are received at two locations l1 and l2, respectively.

Then, a similarity S between locations l1 and l2 can be defined

as follows [21]:

S =
1

|A|
∑
∀a∈A

min(f1(a), f2(a))

max(f1(a), f2(a))
(1)

where A = A1 ∪A2, |A| is the total number of access points

whose signals are received at either location, and fi(a) is the

received signal strength (RSS) of AP a overheard at location

li. If AP a is not overheard at li, then fi(a) will be set to zero.

The range of the similarity S is between 0 and 1. Then, small

areas (e.g., 4 m2) that have low similarity (e.g., S < 0.4)

with all locations outside that area can be chosen as WiFi

landmarks.

Besides, the location point that experiences the strongest

WiFi RSS to an AP within a certain region can be also

regarded as a WiFi landmark. This is because there is usually

only one location point that can receive the strongest RSS

within the coverage of that AP and it is stable, distinctive,

and identifiable. For example, in figure 3, the location point

P2 is a WiFi landmark if it receives the strongest RSS from

the corresponding AP compared to other location points.
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Fig. 3: A type of WiFi landmarks

C. NFC Landmarks
Near field communication technique (NFC) has been inte-

grated into most modern smartphones, which is a specialized

subset within the family of Radio-frequency Identification

(RFID) technology. NFC readers can act as a type of land-

marks as long as they are fixedly installed or do not change

their location for a period of time. When a NFC tag (e.g., a

smartphone) touches on a NFC reader or is within the range

of the NFC reader, the location of the tag can be calibrated.

Nowadays NFC technique has been widely used for payment,

check-in or check-out, etc. The NFC readers are usually placed

at some fixed location points like a cashier’s desk or a door,

as shown in figure 4, which possess the three features of being

a landmark.

Fig. 4: An example of NFC landmarks

D. Accelerometer Landmarks
The motion state of a user changes at certain locations in an

indoor environment, which can be sensed by the accelerometer.

For instance, when a user is opening a door, his or her motion

state would change from Walking to Still, and then to Walking.

The location of the door can be regarded as an accelerometer

landmark if the user has to experience this change every time

he or she passes through the door. The motion state change

also happens when a user goes upstairs or downstairs, or takes

an elevator upward or downward.
Figure 5 shows the change in the magnitude of acceleration

when a user passes through a door. The accelerometer readings

can be inputed into a classifier (e.g., a decision tree) that

classifies the user motion states (e.g., Walking, Still, Going

upstairs). More details about motion state classification can

be found in our previous work [22]. The change pattern of

”Walking −→ Still (for a few seconds) −→ Walking” can

be regarded as a condition that checks whether a door is a

potential accelerometer landmark.

Fig. 5: The change in the magnitude of acceleration when a

user passes through a door

Fig. 6: The change in the gyroscope readings on the Z-axis

when a user takes a turn (The user holds the phone in the

hand)

E. Gyroscope Landmarks

The gyroscope can measure the angular displacements with-

out the effect from ferromagnetic materials or other devices.

When a user takes a turn, there is a significant change in

the gyroscope readings, as depicted in figure 6. To detect a

gyroscope landmark, we define dgyro as the difference in the
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average value between two neighboring windows of gyroscope

readings, namely

dgyro = | ¯̇θi+1 − ¯̇
θi|, i = 1, 2, 3, ... (2)

when dgyro is greater than a certain threshold εgyro, we

consider this location point as a potential gyroscope landmark

and record the sensor readings and corresponding position at

this point.

F. Barometer Landmarks

The barometer is able to measure the air pressure, which

changes with the height. This means that it can be used to

detect the vertical movement of a user (e.g., going upstairs or

downstairs, taking an elevator). Figure 7 shows the change

in the barometer readings when a user walks horizontally,

goes upstairs or downstairs, and takes an elevator downward

or upward.

It is easy to recognize these motion states by using the

pressure derivative feature proposed in [22]. Stairs and el-

evators can be regarded as barometer landmarks, provided

that they satisfy the distinctiveness, identifiability and stability

conditions.

.

Fig. 7: The change in the pressure when a user takes stairs or

an elevator

G. Visual Landmarks

Traditionally, visual landmarks are recognized by their fa-

cade area, shape, color, and visibility [23], and this recognition

needs human’s attention and participation. Nowadays, the

camera, which has been integrated into modern smartphones,

can assist human to recognize these visual landmarks.

However, continuously using the camera reduces the battery

run time dramatically. A promising type of visual landmarks

is quick response (QR) code, which can be seen everywhere

(e.g., supermarkets, shopping malls) today. These QR codes

are good potential visual landmarks if they are attached at

fixed locations. The detection of QR codes is easy, as shown

in figure 8, and they can be quickly recognized by scanning

with the camera.

Fig. 8: An example of visual landmarks (QR code)

H. Audio Landmarks

The microphone can capture the human voice as well as

the sound from environment. Some machines that are placed

at some fixed locations may produce a particular sound, which

is different from environment noise and human voice. If this

sound is stable, then the location of the machine can be an

audio landmark.

I. Magnetic Landmarks

A magnetic landmark is a location point where the magne-

tometer presents an outlier due to the effect of ferromagnetic

materials. It can be detected by checking whether the average

value of a window of magnetometer readings exceeds a

threshold.

IV. LOCATION ESTIMATION OF SENSORY LANDMARKS

To use sensory landmarks for calibrating the accumulated

error of inertial sensors-based localization method, we need

to first obtain the locations of sensory landmarks. While the

locations of some landmarks (e.g., those at the location of

stairs, elevators) can be obtained from the map information,

other landmarks can be inferred from users’ trajectories. Here

we provide the method for estimating the locations of sensory

landmarks from the trajectories obtained by the DR method.

The basic equations of the DR method are as follows:{
xt+1 = xt + st sin θk

yt+1 = yt + st cos θk
(3)

where (xt, yt) and (xt+1, yt+1) are the locations of a user at

time t and t + 1, respectively. st is the corresponding dis-

placement and θk is the heading at step k (which corresponds

to the time period from t to t + 1. Given an initial location

(x0, y0), we can infer the user’s real-time location by making

use of the collected readings from accelerometer, gyroscope

and magnetometer. To do this, we need to compute the user’s

step length and heading at each step.
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A. Step Length Estimation

It is observed that the step length of a user is relatively

fixed during a period of time. Thus, we can use the following

formula to calculate the user’s step length at each step.

st = st−1 +Δst (4)

where st is the value of the step length whose initial value

can be empirically determined (e.g., 0.65 meters according to

[24]). Δst is the deviation at time t between the ground truth

and the estimated value of step length.

To estimate the value of Δst, we need to know how many

steps a user takes from a known point to another known point

(which can be inferred from map information). This can be

done by utilizing the repetitiveness and periodicity of a user’

walking to check the number of peaks in the accelerometer

readings. Suppose the user takes n steps traveling this distance

d between these two points, then we can compute Δst as

follows:

Δst = (d− n · st−1)/n. (5)

B. Heading Estimation

Both the magnetometer and the gyroscope in the smartphone

can be used to provide the user’s heading. However, the mag-

netometer is affected by the ferromagnetic materials, and the

gyroscope has the drift problem. To address these problems,

we can use the Kalman filter to combine the magnetometer

readings and gyroscope readings, which can eliminate the

magnetic effect on the magnetometer and the drift problem of

the gyroscope [12]. The main equations of the Kalman filter

are as follows.

Prediction:

θ−k = θ−k−1 − θ̇k ·ΔT (6)

P−
k = Pk−1 +Q (7)

Update:

θk = θ−k +Kk · (θ′
k − θ−k ) (8)

K−
k = P−

k /(P−
k +R) (9)

Pk = (I −Kk) · P−
k (10)

where θk is the heading computed at the kth step, θ
′
k and θ̇k are

the angle from the magnetometer and the gyroscope reading

along the movement direction, respectively. ΔT indicates

the sampling interval, Kk denotes the Kalman gain, and Pk

represents the error covariance matrix. Q and R are the

process noise covariance and measurement noise covariance,

respectively.

C. Location Refinement of Sensory Landmarks

Given an initial location, we can use the DR method to

infer and record the locations of a user, including potential

sensory landmarks where some sensors present the defined

feature patterns. However, the coordinates of these potential

sensory landmarks that are inferred from the user’s trajectories

are coarse and inaccurate, which need to be further refined.

Also, as we mentioned before, potential sensory landmarks

need to be verified on their stability to be considered as

sensory landmarks. This ensures that we can eliminate some

false sensory landmarks. For example, the accelerometer might

present the features of an accelerometer landmark when a

walking person runs to another person at the corridor and

stops for a short chat, which cannot be considered as a sensory

landmark since it does not satisfy the stability requirement.

Fig. 9: Refining locations of sensory landmarks

In the following, we introduce the distance constraint-based

K-Means clustering method [12] to determine sensory land-

marks by checking the stability condition and further refine

their locations. This algorithm takes as input a sequence of

potential sensory landmarks with coarse coordinates (denoted

by Y = {y1, y2, · · · , yn}), a distance constraint threshold r
(which is an empirical value, e.g., 2 meters based on [12]), and

a quantity threshold η. It outputs a set of sensory landmarks

with refined coordinates, denoted by C1, C2, · · · , Cm. Each of

them represents a sensory landmark and the clustering center

is the refined coordinates. The procedure of the algorithm is

described in the flowchart 9, where d represents the function

to compute the Euclidean distance, and center is the function

to compute the clustering center.

The algorithm starts by randomly or sequentially selecting
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a potential sensory landmark y1 from Y and putting it into

an empty cluster of sensory landmarks denoted by C1. Then

repeat this process under the constraint of the distance thresh-

old r: if the distance between a newly-selected element yi
from Y and the center of any existing clusters of sensory

landmarks is smaller than r, then put yi into the existing

cluster whose center is nearest to yi and recalculate the center

of this cluster; otherwise, create a new cluster and put yi
into this newly-created cluster. After this, update all cluster

centers being influenced. Once all elements in Y have been

assigned, we need to check and adjust all elements in each

cluster to make sure that each element falls into the cluster

whose center is nearest to itself. To stipulate the stability of

a sensory landmark, we only consider those clusters whose

quantity of elements is greater than a threshold η as sensory

landmarks.

V. CONCLUSION

In this paper, we propose the concept of sensory landmarks,

which not only can be used to assist indoor localization, but

also are useful for navigation, tracking, and other location-

based services. Different types of sensory landmarks are

defined and the corresponding detection methods are given.

In addition, we show how to estimate the locations of the

proposed sensory landmarks. In the near future, we will

investigate how to use sensory landmarks for assisting indoor

localization and navigation.
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