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Brain-inspired multimodal hybrid neural network for
robot place recognition
Fangwen Yu1†, Yujie Wu1,2†, Songchen Ma1†, Mingkun Xu1, Hongyi Li1, Huanyu Qu1,
Chenhang Song1, Taoyi Wang1, Rong Zhao1,3*, Luping Shi1,3,4*

Place recognition is an essential spatial intelligence capability for robots to understand and navigate the world.
However, recognizing places in natural environments remains a challenging task for robots because of resource
limitations and changing environments. In contrast, humans and animals can robustly and efficiently recognize
hundreds of thousands of places in different conditions. Here, we report a brain-inspired general place recog-
nition system, dubbed NeuroGPR, that enables robots to recognize places by mimicking the neural mechanism
of multimodal sensing, encoding, and computing through a continuum of space and time. Our system consists
of a multimodal hybrid neural network (MHNN) that encodes and integrates multimodal cues from both con-
ventional and neuromorphic sensors. Specifically, to encode different sensory cues, we built various neural net-
works of spatial view cells, place cells, head direction cells, and time cells. To integrate these cues, we designed a
multiscale liquid statemachine that can process and fusemultimodal information effectively and asynchronous-
ly using diverse neuronal dynamics and bioinspired inhibitory circuits. We deployed the MHNN on Tianjic, a
hybrid neuromorphic chip, and integrated it into a quadruped robot. Our results show that NeuroGPR achieves
better performance compared with conventional and existing biologically inspired approaches, exhibiting ro-
bustness to diverse environmental uncertainty, including perceptual aliasing, motion blur, light, or weather
changes. Running NeuroGPR as an overall multi–neural network workload on Tianjic showcases its advantages
with 10.5 times lower latency and 43.6% lower power consumption than the commonly used mobile robot pro-
cessor Jetson Xavier NX.
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INTRODUCTION
Place recognition has gained increasing attention in the robotics
community to help robots understand the spatial characteristics
of the world. It refers to the problem of deciding whether a place
has been visited before, and, if it has been visited before, which
place it was (1). Many recent studies have achieved great progress
in improving the performance of place recognition with a single
image or jointly with image, geometric, and semantic information
(1–5). However, place recognition in natural environments remains
a huge challenge because of rapid environmental changes and strin-
gent requirements for power, computing, and latency caused by the
limited resources of robots. Three crucial challenges still retard the
development of place recognition, including how to sense places re-
liably, represent places robustly, and match places efficiently.

To address these challenges, roboticists have turned to nature for
inspiration. At present, there are two main approaches: designing
biologically inspired visual place recognition (VPR) methods (6–
12) and using neuromorphic sensors, such as event cameras (13–
15), to improve the precision and robustness of place recognition
(16–22). Despite the advancements brought by various biologically
inspired approaches, most of them still face three main problems.
First, they often fail to address changing physical locations or

viewpoints when only a single sensory cue is used. Second, the
place representation captured by a single conventional frame-
based camera or neuromorphic sensor leads to the loss of a large
amount of information in varying environments. Third, the com-
putational cost scales linearly with the dataset size. In large-scale
wild environments, the high computational load causes delays in
place matching, degrading the real-time performance of robots.

In contrast, humans and animals demonstrate remarkable place
recognition capabilities, robustly identifying places in large three-
dimensional environments (23–26). They can reliably sense, robust-
ly represent, and efficiently recognize places using an internal con-
junctive representation of spatial view cells (27, 28), auditory view
cells (3, 29–31), olfactory view cells (32–34), place cells (35, 36),
head direction cells (37, 38), grid cells (39, 40), and time cells
(41–43). As illustrated in Fig. 1A, when people recognize a place,
different sensory cues could activate multiple types of sensory
cells (28, 44, 45). These cells can provide a spatiotemporal represen-
tation of a place that extends along a continuum, with each moment
containing information about the past, present, and future (26), fa-
cilitating the precision and robustness of place recognition.
However, such hybrid spatiotemporal continuity of perception
and encoding is still lacking in current methods of place recogni-
tion. Combining multimodal sensing and the property of hybrid
spatiotemporal computing may offer perspectives for the develop-
ment of place recognition, but this has yet to be explored.

Neuromorphic computing provides an emerging hardware plat-
form for the spatiotemporal computing paradigm using neural
principles of integrating information processing and memory in
the brain, demonstrating advantages of low power consumption,
multiple network parallelism, and low delay inferences (46–58).
One of the recent advances in this field is the Tianjic chip, which
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provides a unified platform that supports versatile neural network
models with high efficiency. This platform can execute artificial
neural networks (ANNs) and spiking neural networks (SNNs) in-
dependently or in a hybrid manner (46–48, 51), providing a strate-
gic opportunity to overcome the bottlenecks of conventional VPR.

Here, we report a neuromorphic general place recognition
system, dubbed NeuroGPR, that emulates the neural mechanisms
of multimodal sensing, coding, and computing, enabling robots
to recognize places in natural environments robustly and efficiently.
We addressed several key challenges in the design of NeuroGPR.

First, to enhance the reliability of a single sensor, we integrated
multiple conventional sensors and neuromorphic sensors in our
systems formultimodal sensing. This enables the robot to effectively
capture and process multiscale spatiotemporal information by em-
ulating multimodal sensing mechanisms of the brain.

Second, to encode and fuse multiscale, multidimensional infor-
mation from different sensors, we designed a multimodal hybrid
neural network (MHNN) model and a multiscale liquid state
machine (MLSM)model for asynchronous fusion of multimodal in-
formation. The MLSM is built on heterogeneous spiking neurons

for information processing, which emulates the diverse neural in-
formation processing mechanisms of the brain and projects the
multimodal information into a high-dimensional sparse represen-
tation space using local inhibitory circuits. By optimizing the
network parameters through gradient descent techniques, MLSM
can effectively fuse the multimodal information and enable the
robot to work robustly even when parts of the modal information
are missing or changed.

Third, we used the hybrid neuromorphic chip Tianjic to effi-
ciently execute multiple cross-paradigm networks in parallel. The
Tianjic chip allows the robot to concurrently realize multiple
neural networks with various scales, precisions, and structures
using independently configurable function cores. Its flexible data
movement mechanism and adjustable timing schedules enabled ef-
ficient data interactions and signal conversions between different
networks. We deployed the MHNN on Tianjic to perform place
recognition.

Last, we developed a quadruped robot system equipped with
multimodal sensors and hybrid neuromorphic chips to evaluate
the NeuroGPR system (Fig. 1B). We tested NeuroGPR in natural

Fig. 1. The mechanism of place recognition in humans and robots. (A) Humans can recognize a place according to multimodal sensory cues with spatiotemporal
continuity. The place is encoded by external sensory cells and internal conjunctive spatiotemporal cells. The multimodal sensory cues could activate these cells together.
The conjunctive firing pattern can encode and recall a specific place uniquely. (B) The robot can recognize a placewith a brain-inspired place recognition system. Similarly,
the robot can obtain sensory cues of the environment using multimodal sensors. An MHNN model deployed on a neuromorphic computing chip was used to encode
these sensory cues, which can recognize places with a multiple–spatiotemporal scale fusion approach robustly.

S C I ENCE ROBOT I C S | R E S EARCH ART I C L E

Yu et al., Sci. Robot. 8, eabm6996 (2023) 10 May 2023 2 of 12

D
ow

nloaded from
 https://w

w
w

.science.org at T
singhua U

niversity on M
ay 02, 2025



environments and demonstrated that it outperformed the state-of-
the-art conventional techniques in both indoor and outdoor envi-
ronments, exhibiting robustness to environmental uncertainties.

RESULTS
Multimodal hybrid neural network
The MHNN is composed of convolutional neural networks
(CNNs), SNNs, and continuous attractor neural networks
(CANNs) for representing multisensory cues and an MLSM for
fusing multimodal information. The overall structure of the
MHNN is shown in Fig. 2A. Specifically, we adopted versatile
neural encoding strategies, such as rate-based coding and Gaussian
population coding, to encode heterogeneous sensory cues. Different
network modules processed distinct features and fed multimodal
information into theMLSM. All modules were ultimately integrated
within a unified optimization framework, which was optimized
using the backpropagation-through-time (BPTT) algorithm.

Considering the spatiotemporal multimodality of the external
input data from different cells, we used the representative CNN,
SNN, and CANN for modeling the spatial view cells, place cells,
head direction cells, and time cells, thus encoding different types
of inputs. Specifically, because nonspiked CNNs are generally
adept at processing information with high spatial complexity, we
adopted it to model spatial view cells for processing frame-based
visual cues. Spiking networks mimic biological spike-based infor-
mation processing mechanisms that can naturally extract temporal
correlations and are conducive to processing event-driven spatio-
temporal data streams. We adopted an SNN model to model the
function of spatial view cells for event-based visual cues. In addi-
tion, place cells and head direction cells have been widely studied
using neuroscience-inspired CANNs, providing generic and
simple models for low-dimensional spatiotemporal continuum fea-
tures. Because the robot needed to consider its local relative posi-
tion, direction, and time information when it moved through

Fig. 2. The NeuroGPR system architecture. (A) The MHNNmodel is composed of a CNN, an SNN, and three CANNs. The multimodal features are extracted from sensory
cue representations, which are combined by a multiple–spatiotemporal scale fusion approach using the MLSM. (B) Key components of the NeuroGPR system. The system
comprises multimodal sensors, the neuromorphic computing chip Tianjic, and a quadruped robot. (C) The pipeline of the NeuroGPR system. The host computing plat-
form is dedicated to sensor data acquisition, data preprocessing, robot control, and data communication. The MHNN is mapped and deployed on Tianjic, which recog-
nizes places on the basis of the inputs of query data.
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space, we introduced three CANNs to model the functions of place
cells, head direction cells, and time cells, respectively.

To integrate these encoded data by different modules, we built
the MLSM model with a liquid pool of differentiable spiking
neurons with the membrane dynamics, adaptive threshold, and
adaptive currents. As shown in Fig. 2A, various sensory information
was projected into different regions of the liquid machine. The local
inhibitory circuits and lateral inhibitions controlled the information
representation and interaction for each modality of information.
We used the BPTT algorithm to optimize the synaptic weights
and hyperparameters of neuron dynamics. Last, we trained a classi-
fier to decode spike signals from the pool and produce the recogni-
tion results.

System architecture
We built the NeuroGPR system on the basis of a quadruped robot to
perform place recognition tasks in real time. As shown in Fig. 2B, we
deployed a neuromorphic dynamic vision sensor (DVS); an Intel
Realsense RGB-D camera; a WHEELTEC IMU N100; a host com-
puting platform, Nvidia Jetson Xavier NX (known as Xavier NX);
and a Tianjic computing platform on the robot. Ubuntu 18.04
and Robot Operating System Melodic (59), were installed on
Xavier NX, which can preprocess sensor data and control the
robot. A toolchain of mapping, compiling, and execution of
Tianjic was used to process the NeuroGPR model. The pipeline of
the NeuroGPR system is shown in Fig. 2C. The DVS, RGB-D
camera, and IMU were connected to Xavier NX. Tianjic obtained
the sensor data from Xavier NX. The parallel network data flow
of the MHNN was deployed on the Tianjic chip for recognizing
places according to the inputs.

We leveraged Tianjic to support the MHNN for place recogni-
tion. Tianjic can support the parallel execution of multiple cross-
paradigm hybrid neural networks and has a unified, configurable,
and scalable architecture with reconfigurable units supporting rich
coding schemes and hybrid models. Each functional core can be
configured independently, enabling the chip to concurrently imple-
ment multiple neural networks with various neural types, scales,
precisions, and structures. Moreover, it provides flexible data move-
ment mechanisms and adjustable timing schedules, enabling effi-
cient data interactions and signal conversions between different
networks.

In the following sections, we evaluated NeuroGPR’s real-time
performance from computing efficiency, power consumption, and
recognition accuracy. We also compared NeuroGPR with the state-
of-the-art biologically inspired VPR approaches. Last, we investigat-
ed the effects of different network modules and the robustness of
environmental changes.

Performance evaluation
We validated the performance of the NeuroGPR system on a robot
with different scenarios and conditions. As illustrated in Fig. 3, the
test scenarios were set up in a room, a long corridor, and a wild
forest. In different locations or floors, the appearances of the envi-
ronment were very similar from the same or opposite viewpoints,
and the light changed a lot in different areas. When the robot
moved into the dark area, the image captured from the conventional
camera became fully dark, indicating that useful information was
lost, as shown in Fig. 3D. Furthermore, to add uncertainty to the
environment, we designed the scenario so that some people

suddenly entered or left the corridor without notice. These chang-
ing factors can help us evaluate the robustness of the NeuroGPR
system in natural environments. In addition, we tested the system
in a forest environment, as shown in Fig. 3F. The robot vibrated
when moving on the cobbled road, which led to motion blur of
RGB images and noise in event camera data. The light changed at
different times, leading to large changes in the RGB image that were
captured in the same place.
Computing performance
We conducted a computing performance of the MHNN model on
the Tianjic chip and compared the performance with those of other
computing platforms, including Xavier NX and Nvidia Jetson AGX
Orin (known as AGX Orin), which are commonly used for mobile
robots and edge intelligent applications. Both of them have integrat-
ed central processing units (CPUs), graphics processing units
(GPUs), and peripheral interfaces. The AGXOrin with higher com-
puting power was released later than the Xavier NX. Because of the
limited resources on the hardware systems, we simplified the
MHNN for the deployment and ensured consistent network
models across all comparison platforms.

Computing latency is the key performance indicator for place
recognition in robots. However, in the scenario of mobile robotics,
standardized metrics for evaluating the real-time processing capa-
bility of multi–neural network (multi-NN) models like the MHNN
are now lacking. To assess multi-NN performance reasonably, we
considered the computing latency performances of these platforms
in two aspects: single-NN workloads and multi-NN workloads. To
demonstrate different features of the MHNN model, the single-NN
workloads evaluated the average timing duration for processing
inputs (after preprocessing) from any sensor and updating the
MLSMuntil a valid output was obtained. In real-world and practical
applications, robots usually receive input data from various sensors
simultaneously, necessitating concurrent execution of different
neural networks by the processor. Thus, the multi-NN workloads
evaluated the task-level parallelism performance of computing
hardware.

We executed independent operations and performance tests of
three groups of single-NN workloads on multiple hardware plat-
forms, namely, CNN + MLSM, SNN + MLSM, and CANN +
MLSM (corresponding to the three different sensor inputs
exactly). These tests enable simple estimation of the computing per-
formance of a hardware platform when operating different types of
networks. As shown in Fig. 4A, Tianjic demonstrated competitive
real-time performance in three different single-NN workloads.
When processing the CNN + MLSM on Tianjic, the average com-
puting latency was decreased by 93.4 and 87.8% compared with
Xavier NX and AGX Orin, respectively. For the SNN + MLSM,
the average computing latency of Tianjic was decreased by 87.3
and 77.0% compared with another two processors, respectively.
We carried out parallel optimization for GPUs according to their
architectural features to achieve a fair and objective evaluation: con-
tinuously accumulate nine frames of DVS input and then send them
to SNN for processing. In this case, the GPU only needs to run the
MLSM once every nine frames. However, because Tianjic embodied
a data-driven execution pattern, the computing latency was calcu-
lated by adding the nine frames’ processing time of both the SNN
and theMLSM.When processing the CANNonGPUs, the comput-
ing latency of Xavier NX was about 692.4 times the number of
Tianjic, and AGX Orin was about 304.1 times. Through analysis,
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the computation for CANN involved solving ordinary differential
equations (ODEs), but running CANN on GPU requires more in-
tensive computation resources. Alternatively, Tianjic discretized
and iterated the ODE solving process with time steps and
adopted a lookup table to realize nonlinear function solving,
leading to the improvement in performance. For objectivity and
fairness, we also deployed the CANN on the CPUs of the two pro-
cessors, and performance improved. In this case, the computing
latency of Xavier NX was about 34.2 times the number of Tianjic,

and AGX Orin was about 16.2 times. Thus, Tianjic demonstrated
competitive real-time performance in single-NN workloads.

We further evaluated the performance in the processing of
multi-NN workloads. GPUs typically adopt the single-instruction
multiple-thread architecture and rely on the multiprocess of the op-
erating system to implement the multi-NN scheduling and execu-
tion, leading to an extra delay in the task switch. Conversely,
Tianjic’s many-coremultiple-instructionmultiple-data architecture
enabled spatial multitasking and pipelining, allowing each neural

Fig. 3. Snapshots of the experimental environments. Snapshots of the robot experiment in the room (A), corridor (C), and forest (E) environments. Snapshots of the
reference cues for training and the query cues for testing in the room (B), corridor (D), and forest (F) environments.
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network to be deployed in parallel on separate core clusters and al-
leviating the resource preemption and switching delay. Conse-
quently, when the computing and storage resources were
sufficient, the computation delay of the multi-NN workloads
matched that of the single-NN workloads. The aforementioned
three single-NN workloads were submitted to Xavier NX and
AGX Orin concurrently via multiprocess, and the average latency
of each group of workloads was tested. As shown in Fig. 4B, the
computing delay of each workload was increased compared with
the independent execution in most cases. Xavier NX could only
achieve concurrent execution of two processes at a time because
of bandwidth limitation. Thus, we conducted four sets of tests for
Xavier NX to examine a wider range of concurrent executions. The
computing latency of Xavier NXwas the average value of four sets of

tests (see fig. S10 for details). For execution of multi-NN workloads,
when processing on Tianjic, the average computing latencies for
three groups of workloads were still able to be decreased by 90.3
to 97.8% and 77.7 to 93.8% compared with when they ran on
Xavier NX and AGX Orin, respectively. At this point, we got com-
parative data by deploying CANN on their CPUs. If CANN is de-
ployed on the GPUs of Xavier NX and Orin, then Tianjic can
achieve hundreds of times (about 303.5 times) the performance im-
provement data. Under multi-NN workloads evaluation, the com-
puting latency for the overall MHNN could be equivalent to the
largest latency value in all neural networks processing. Thus, the
computing latency for the overall MHNN model processing on
Tianjic, Xavier NX, and AGX Orin was 7.31, 84.04, and 32.79 ms,
respectively. In other words, compared with Xavier NX and AGX

Fig. 4. The experimental results of computing efficiency and accuracy. Computing latency of processing single-NNworkloads (A) andmulti-NN workloads (B). (C) The
power consumption of processing MHNN under the multi-NN workloads test. (D) Accuracy of NeuroGPR running on the robot. The accuracy (E), the recall (F), and the
precision-recall (G and H) curves of place recognition based on different datasets. The mean errors and SDs are based on the results obtained in five experiments.
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Orin, Tianjic achieved 10.50 and 3.49 times improvement in real-
time processing performance for the overall MHNN model,
respectively.

Power consumption is another key measurement for the long-
term operation of robots, particularly in the wild environment.
We further evaluated the average power consumption of the
MHNN model under the test of multi-NN workloads on different
processors. The MHNN running on Tianjic consumed 43.6% less
power than on Xavier NX and 66.0% less than on AGX Orin
(GPU specific), as shown in Fig. 4C. Because Xavier NX had diffi-
culty with submitting three neural network processes for concur-
rent running, to obtain the power performance of multi-NN
workloads, we had to integrate three neural networks into one
process for testing. Because of insufficient utilization of hardware
resources, this method led to the decline of power consumption
on this processor. Compared with conventional processors,
Tianjic introduces a multiple primitive execution mechanism for
the many-core neuromorphic architecture, enabling each function-
al core to execute with time-division multiplexing and reuse. By in-
tegrating the asynchronous execution mechanism of the spatial
grouping of functional cores, Tianjic can support spatiotemporal
hybrid mapping efficiently. Specifically, layers in a computing

task can be divided into different layer groups. Different layer
groups can be deployed to different temporal core clusters in
space for asynchronous execution to leverage the advantage of par-
allel pipelined execution of themany-core neuromorphic chips. The
layer in each layer group is also completed in parallel through mul-
tiple functional cores with the maximized utilization of computing
and storage resources in the local functional core through temporal
mapping. Therefore, the hardware utilization and throughput can
be enhanced (48, 51). In the mobile robot scenarios, the frame
rate of the sensor directly affects the throughput of the system, so
we would not prioritize the evaluation of the computing
throughput.
Accuracy evaluation of place recognition
We next demonstrated the practical performance of NeuroGPR in
different environments using the accuracy metric, which evaluates
how many places the robot can recognize correctly in all queries.
Figure 4D shows the accuracies of NeuroGPR in the room, corridor,
and forest environments, indicating high recognition accuracies and
stable performance in different practical environments.

To further evaluate NeuroGPR, we compared its performance
with those of two state-of-the-art biologically inspired place recog-
nition methods, FlyNet and SPL, in different environments. We

Fig. 5. Experimental results of robustness to environmental changes. Influence of different modules on the recognition accuracies of the THU-forest dataset (A), the
Brisbane-Event-VPR dataset (B), and the corridor dataset (C). Evaluation of the recognition accuracies of different models on the room dataset (D), the corridor dataset (E),
and the Brisbane-Event-VPR dataset (F). The mean errors and SDs are based on the results obtained in five experiments.
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collected the datasets in large-scale indoor and outdoor environ-
ments. The properties of these datasets are listed in table S2, and
the relevant snapshots and distance matrices are shown in figs. S1
to S8.

In Fig. 4E, we compared the place recognition accuracy of differ-
ent methods in various environments. In the room, corridor, forest,
and road environments, NeuroGPR outperformed SPL and FlyNet.
Figure 4F demonstrates that NeuroGPR also had higher recall rates
than SPL and FlyNet in three different environments. Figure 4 (G
and H) shows the precision-recall curves of the three methods on
the Brisbane-Event-VPR dataset, where the sunset-1 data were
used to train these models and the sunset-2 data (Fig. 4G) and
the daytime data (Fig. 4H) were used to test each model. The pre-
cision-recall curves demonstrate that NeuroGPR achieved more
robust and precise place recognition than SPL and FlyNet in differ-
ent weather and light conditions.
Influence of different network modules
We investigated the influence of the single network module on the
performance of NeuroGPR in various conditions. We designed
three control models by selectively turning off parts of information
processing modules, including a single CNN module, an SNN
module, and three CANN modules. In these models, the MHNN
combines the information from the remaining open modules for
place recognition. We evaluated the function of different modules
on various datasets, including the Tsinghua University (THU)–
forest, Brisbane-Event-VPR, and corridor datasets. The firing pat-
terns of the place cells and head direction cells represented by the
CANN modules are provided in fig. S9.

As shown in Fig. 5A, the MHNN outperformed other modules
on the THU-forest dataset, achieving higher accuracies than the
CNN, SNN, and CANN modules. Similarly, Fig. 5 (B and C) dem-
onstrates that NeuroGPR achieved higher accuracies than single-
module models on the sunset-night data in both the Brisbane-
Event-VPR dataset and the corridor datasets. The corridor dataset
contained data where the robots navigated in the same place but
with the opposite direction. The high performance of NeuroGPR
shown in Fig. 5C indicates that the position and direction informa-
tion can help the NeuroGPR system eliminate errors caused by the
scene similarity from different locations or different views of the
same or different floors. Collectively, our results indicate that Neu-
roGPR can integrate multisensory cues for comprehensive decision-
making, provide high recognition accuracy, and enable more flexi-
ble use of different networks to adapt to changing environments.
Robustness to environmental changes
Environmental conditions can change rapidly and unpredictably in
natural settings. We next evaluated the performance of NeuroGPR
on the three typical environmental changes: light, weather, and ap-
pearance. To simulate the natural environments, we added noise to
the room and the corridor datasets by reducing the image bright-
ness by 50% and cropping the image size from 346 pixels by 260
pixels to 128 pixels by 128 pixels. In addition, we directly used
the Brisbane-Event-VPR dataset at different times and weather con-
ditions to test the system’s robustness.

As shown in Fig. 5 (D and E), NeuroGPR exhibited higher per-
formance compared with SPL and FlyNet in changing environ-
ments. Even after reducing image brightness or cropping the
image size, the performance of NeuroGPR was not affected. The
other modules continued to provide stable and robust performance
when frame-based signals deteriorated. Figure 5F shows that

NeuroGPR outperformed SPL and FlyNet in different lighting
and weather conditions, highlighting its strong robustness. In all
conditions, NeuroGPR achieved higher accuracy compared with
SPL and FlyNet. These results indicate that NeuroGPR holds
promise for robust operation in uncertain and changing
environments.

DISCUSSION
We have presented a brain-inspired general place recognition
system that performs multimodal sensing, coding, and computing,
enabling a mobile robot to recognize places in natural environ-
ments. Unlike conventional and biologically inspired place recogni-
tion approaches, we leveraged multimodal sensing, an MHNN, and
a hybrid neuromorphic chip to process the multimodal and multi-
ple–spatiotemporal scale information for place recognition. We
evaluated the NeuroGPR system on the basis of a quadruped
robot in real-time and large-scale datasets offline in both indoor
and outdoor natural environments. The experimental results
showed that NeuroGPR not only was competitive in performance
but also demonstrated capabilities with high robustness, low
latency, and low power consumption.

To improve the performance of a single sensor, we integrated the
conventional and neuromorphic sensors and emulated multiple
neural coding strategies. For encoding and fusing multiscale and
multidimensional information, we introduced the MHNN and pro-
posed the MLSM model. The MLSM leveraged the sparse neuron
activities for representing different sensory information and
enabled the model to process multimodal information asynchro-
nously. We demonstrated the effectiveness and robustness of the
MLSM in multiple natural environments.

We also leveraged the neuromorphic Tianjic chip to implement
the MHNN efficiently. The Tianjic chip offers concurrent realiza-
tion of multiple neural networks with various scales, precisions, and
structures. Our results on the chip demonstrated that the flexible
data movement mechanism and adjustable timing schedules
enable efficient data interactions and signal conversions between
different networks, leading to improved computing efficiency and
reduced power consumption compared with conventional hard-
ware systems.

Collectively, the proposed NeuroGPR system achieved compet-
itive performance, high robustness, low latency, and low power con-
sumption compared with conventional and biologically inspired
place recognition approaches. We believe that our work offers in-
sights into how neuromorphic techniques can improve the capabil-
ities of robots. Futurework will focus on integrating NeuroGPR into
the next generation of fully neuromorphic Simultaneous Localiza-
tion and Mapping (SLAM) and navigation systems for brain-in-
spired robotics (60), which will allow autonomous robots to
operate in natural environments with high robustness, high com-
puting efficiency, and low power consumption.

MATERIALS AND METHODS
Implementation of MHNN
The MHNN comprises five front-end network modules (including
CNN, SNN, and three CANNmodules) for processing distinct mul-
timodal sensory input, the MLSM for integrating the processed
multimodal information, and a linear decoder for outputting
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results. We elaborate on each module of the MHNN model and
provide the training details of the overall model. The detailed pa-
rameters are listed in table S1.
CNN module
We used pretrained network models for the CNN module. To meet
the hardware requirement, the pretrained ResNet50 was simplified
and deployed on Tianjic chips. To compare with other algorithms,
the pretrained MobileNet-V2 was adopted for demonstrating the
algorithmic performance on three datasets. For each frame-based
sensory information, the results of the CNN module were incorpo-
rated into the network, and the activation in the last hidden layer
was taken as the output for the MLSM. In our experiment, the
CNN module was fixed without further fine-tuning.
SNN module
An eight-layer convolutional SNN was established with the struc-
ture (Input-AP2-64C3P3-128C2P3-256C2P3-256C2P3-AP2-
FC512-FC512-FC200) to process event-based information, where
AP2 represents the average pooling with a kernel size of 2, C3P3
represents the convolutional layer with a convolutional kernel size
of 3 and a padding size of 3, and FC represents the fully connected
layer. The leaky integrate-and-fire (LIF) model was adopted to
process event-driven spike signals with the following dynamics:

τu1 du
dt ¼ � ðu � urÞ þW1I;
sðtÞ ¼ HðuðtÞ � vthÞ

�

where τu1 represents the membrane potential time constant, ur rep-
resents the resting potential,H(x) represents the Heaviside function,
W1 represents the input weights, and vth denotes the neuronal firing
threshold. Equation 1 describes that the membrane potential re-
ceives the weighted sum of input currents I with time. When the
membrane potential exceeds the given threshold vth, the LIF
neuron fires a spike and resets the membrane potential to ur; oth-
erwise, the membrane potential accumulates to the next time step.
In our experiment, the event-based data were directly input into the
module, and the module output was sent to the MLSM for further
processing. We used the surrogate function techniques (61, 62) to
approximate the derivative of the spiking function H(x).
CANN module
We established a position-based two-dimensional CANN with 64
neurons by 64 neurons to process the position information. We
took the Gaussian encoding method and constructed one neuron
population with 64 neurons by 64 neurons, where each neuron
has its independent receptive field. In this manner, the position in-
formation was encoded by the neuron population activities. We fol-
lowed the work (63) to build the CANN modules with continuous
attractor dynamics. Typically, the encoded spike signals were con-
tinuously input into the network. The continuous attractor dynam-
ics was evolved following the equation below with a 0.05-ms
simulation time step:

τu2 du
dt ¼ � uðx; tÞ þ α

Ð
Jðx; x0Þrðx0; xÞdx0 þ Iextðx; tÞ

Jðx; x0Þ ¼ J0e�
ðx� x0 Þ2

2

rðx; tÞ ¼ uðx;tÞ2

1þα
Ð
uðx;tÞ2dt

8
>>><

>>>:

where τu2 denotes the synaptic time constant, α denotes the connec-
tion density, and J(x, x′) is a function of (x – x′) that represents the
connection strength from neuron x to x′ and is normalized by the

connection constant J0. The term Iext(x, t) denotes the afferent spike
trains by Gaussian encoding. Last, the normalized neuron activities
r(x, t) at the last time step are read as the output.

We established a time-based one-dimensional CANN with 128
neurons to process the time information and used the Gaussian
population coding to encode the time information. When the
robot traversed the road, the relative motion time from a specific
place, for example, the starting place, was taken as the input of
the time cell model. We also established a direction-based one-di-
mensional CANN with 128 neurons to process the head direction
information and used the Gaussian population coding to encode
the head direction information. When the robot suddenly
stopped, the relative motion time was kept constant. The motion
state was detected on the basis of the odometry or IMU information.
We modeled the CANN models of time cells and head direction
cells in a similar manner as described in Eq. 2.
Multiscale liquid state machine
The MLSM constructs the liquid pool using the differentiable
spiking neuron models. This neuron model is based on a specific
type of generalized LIF model known as the GLIF3 model (64),
which can mimic hundreds of different cell types with good repro-
ducibility for diverse biological spiking timing features. The MLSM
introduces the learnable hyperparameters in the dynamics of the
membrane potentials u, input current I, and thresholds vth, allowing
different neurons to process temporal information with varying
time scales.

To explore the optimal hyperparameters of the GLIF3 model for
place recognition, we adapted the expression of GLIF3 and applied
the BPTT for optimizing the hyperparameters of neuronal dynam-
ics and synaptic weights. To make the GLIF3 differentiable, we re-
formulated the original neuron models using the eligibility trace
(65), which models the dynamics regarding the membrane poten-
tial, synaptic current I, and adaptive threshold vth in an explicit it-
erative expression. The dynamics can be formalized as

τu3 du
dt ¼ � ðuðtÞ � urÞ þW2IðtÞ þ Vsðt � δtÞ � sðt � δtÞη

τI
dIðtÞ
dt ¼ � IðtÞ þ αIxðtÞ

τth
dvthðtÞ
dt ¼ � ðvthðtÞ � v0Þ þ αthxðtÞ

sðtÞ ¼ LocalWTAðHðu � vthÞÞ

8
>>>><

>>>>:

where τu3 denotes the membrane potential time constant, δt
denotes the time delay, v0 denotes the resetting values of the thresh-
old, η denotes a resetting constant, V represents sparse lateral con-
nections,W2 denotes the afferent synaptic weights, and x(t) denotes
the output of the front-end modules. τI and τth control the decay
rates of each trace, and αI and αth control the learning rates of dif-
ferent traces. The local winner-take-all (LocalWTA) refers to the
local lateral inhibition (66) to ensure that, in a local neuron pool,
only a small number of neurons with the largest membrane poten-
tials can fire spikes.

At each simulation time step, different types of sensory informa-
tion were projected to different nonoverlapping regions of liquid
pools. We applied the local WTA mechanism for each region and
introduced sparse lateral connections among different regions. Spe-
cifically, by applying local WTA, 20% of the neurons with the
highest membrane potential are allowed to fire spikes, and other
neurons are inhibited by resetting the membrane potential to the
resting values. This competition mechanism encourages sparse
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information representation for each type of modal information. In
addition, random sparse lateral connections with a connection
probability of 20% established interregional connections for spike
signal exchange, which encouraged information association
between different types of information, providingmodality comple-
tion capabilities for robust place recognition. Last, a linear classifier
was used to read out the mean population activity of the liquid pool
and produced the final output.

In our experiment, we randomly initialized decay rates and
learning rates of the eligibility traces from a uniform distribution
U[0,1] to simulate the multiscale dynamics characteristic of biolog-
ically heterogeneous cell types. We optimized the parameters of the
MLSM by minimizing the cross-entropy loss and adopted an adap-
tive moment estimation optimizer (67) to accelerate training.
Details of the parameter settings are provided in table S1.

Deployment on Tianjic
We developed a hierarchical compiler and simulation toolchain to
automatically deploy the MHNN on the Tianjic chip. The Tianjic
compiler included three parts: transformer, mapper, and the code
generator. The transformer was responsible for the operator conver-
sion, optimizing the computation graph model for specific primi-
tives and hardware precision requirements in Tianjic. It completed
the algorithm quantization, converted the algorithm framework
into hardware operators, and lastly output the computation graph
represented by the Tianjic hardware primitives. Taking the chip’s
timing mechanism (68) and hardware constraints into account,
the mapper generated the position and timing distribution of all
task nodes to determine the tasks processed by each functional
core in a time phase (the minimum execution time unit). The
output of the mapper was a computing graph with mapping infor-
mation. Through the code generator, we obtained the resource uti-
lization report of the network and the executable file on Tianjic for
the chip configuration. Last, the executable file was downloaded
into the chip for execution, where the latency and power consump-
tion of network execution were measured accurately.

Performance measurement setup
Multi-NN tasks bring out challenges for meaningful hardware per-
formance evaluation. As a kind of neuromorphic chip, Tianjic has
the feature of near-memory computing and massively fine-grained
parallelism. Therefore, for fair performance evaluation, we have ex-
cluded the latency of data loading in Xavier NX and AGX Orin.
Because our evaluation was specifically centered around the parallel
processing capabilities of the MHNN, the multimodal neural net-
works, we chose to primarily compare the performance of Tianjic
with those of GPUs in Xavier NX and AGX Orin. Here, all of the
results were based on on-chip evaluation, including sample-wise
computing latency (single-NN and multi-NN) and average power.
The power results on Tianjic were evaluated at the chip level in run
time. The power results on the Xavier NX and AGX Orin were ob-
tained via NVIDIA tegrastats.

Statistical analysis
We assessed the performance of NeuroVPR using accuracy, preci-
sion-recall curves, and Recall@K measures, which are commonly
used metrics in previous VPR studies (69). Each model was
trained five times, and we report the average results along with
the SDs in all figures. The error bars displayed in each figure

represent the SD across the five trials. Sample sizes are described
in Results and in the figure legends.

Supplementary Materials
This PDF file includes:
Tables S1 and S2
Figs. S1 to S10
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