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ABSTRACT
Autonomous navigation plays a crucial role in cutting-edge scientific and technological 
domains, such as autonomous driving and space exploration. Current models often rely on 
knowledge of the discharge patterns of navigation cells in living organisms (e.g. place/grid 
cells) to encode spatial information, which works well in ideal environments. However, real- 
world autonomous navigation presents greater challenges due to complex and dynamic 
geospatial information, leading to issues such as low robustness, poor interpretability, and 
high energy consumption for existing models. To address these challenges, it is essential to 
explore the roles and functional connectivity of distinct brain regions involved in processing 
real-world geospatial information and integrate these insights into autonomous navigation 
algorithms. This paper reviews empirical studies using neuroscientific techniques to investigate 
how the human brain processes geographical information during navigation. In particular, we 
discuss opportunities and challenges associated with three critical aspects: (1) expanding the 
understanding of cognitive mechanisms from isolated regional functions to integrated func
tional connectivity and large-scale brain networks, (2) refining neurocognitive experiments to 
provide ecologically valid evidence in complex and dynamic contexts and (3) developing 
efficient approaches to computationally mimic and implement spatial cognition mechanisms 
of human brain in navigation algorithms. Addressing these difficulties would not only enable 
machines to navigate autonomously and effectively in complex real-world and extreme 
environments (e.g. space and the deep sea) but also pave the way for the development of 
future intelligent systems (e.g. GeoAI) with human-like cognitive capabilities.
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1. Introduction

Navigation is critical for the long-term autonomous 
survival of human beings in large-scale and complex 
natural environments and is also a basic spatial activity 
that is indispensable in daily life. Successful navigation 
requires a range of geospatial information to form an 
internal representation (i.e. mental map/cognitive 
map) of the surrounding area (Gold and Saarinen  
1995; Tolman 1948). Through continuous interaction 
with the environment, navigators acquire spatial 
knowledge by learning landmarks and routes, and 
gradually develop their cognitive maps of the environ
ment, which support self- and goal-localization, land
mark anchoring, route planning, and adaptive 
navigation strategies in navigation processes. While 
existing models of spatial knowledge acquisition offer 
valuable insights into autonomous navigation 
(Hegarty et al. 2006; Siegel and White 1975). These 
models do not clarify how spatial information is per
ceived, processed and then used by navigators, i.e. how 

spatial information is efficiently processed by the brain 
into spatial knowledge, thereby offering limited sup
port for the development of navigation systems that 
are robust, energy-efficient, and interpretable. The 
human brain, a generalized intelligence system that 
has evolved naturally over hundreds of millions of 
years, is essential for perceiving, memorizing, proces
sing and applying geospatial information, as well as for 
integrating this information to construct, update, 
store, and retrieve mental maps (Butler, Hardcastle, 
and Giocomo 2019; Peer and Epstein 2021; Raichle  
2009). For this reason, state-of-the-art autonomous 
navigation systems have been initially developed 
based on cognitive computational models inspired by 
the firing patterns and mechanisms of navigation- 
related cells in the animal and human brain, particu
larly place cells and grid cells, which have been exten
sively studied in the field of neuroscience. By 
mimicking the geospatial information processing 
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(e.g. spatial coding, landmark anchoring and route 
planning) observed in biological systems, these models 
achieve improved navigation performance (Burgess 
et al. 1997; Mulas, Waniek, and Conradt 2016; Samu 
et al. 2009). However, these models rely on simplified 
representation of spatial information, by encoding 
isolated navigation-related neurons or brain regions, 
while overlooking the involvement of advanced cog
nitive functions that are essential for real-world navi
gation processes. As a result, these models struggle to 
navigate effectively in complex and dynamic real- 
world environments (Bellmund et al. 2018; Ismakov 
et al. 2017).

Existing autonomous navigation algorithms learn 
animal/human cognitive mechanisms in highly con
trolled and simplified laboratory environments (Liu 
et al. 2022; Tang, Yan, and Tan 2018; Yu et al. 2019; 
Zhou, Weber, and Wermter 2018). However, unlike 
navigation in the strict control setting, real-world 
navigation involves substantial geospatial informa
tion, such as urban elements (i.e. paths, edges, dis
tricts, nodes, and landmarks (Lynch 1964)), terrain 
types, weather conditions, and fluctuating light condi
tions. These factors collectively contribute to the com
plex spatial information encountered during real- 
world navigation, with each playing a distinct role. 
For example, real-world environments are often clut
tered with ambiguous or incomplete landmarks, 
requiring navigators to rely on imperfect or partial 
information to make decisions (Prescott 1996; 
Strickrodt, O’Malley, and Wiener 2015). Beyond land
mark clarity, the geometric structures of the environ
ment, such as two-dimensional layouts (e.g. grid vs. 
non-grid road networks) and three-dimensional ver
tical arrangements (e.g. low-rise vs. high-rise build
ings), also affect how navigators acquire spatial 
knowledge and construct mental maps (Gardony and 
Taylor 2011; Montello and Pick 1993; Ruddle et al.  
2011). These factors, combined with the need to pro
cess and adapt to unexpected changes in dynamic 
contexts (e.g. moving vehicles and pedestrians), 
demand additional navigation processes such as obsta
cle avoidance and path replanning. All these factors 
significantly increase the navigators’ cognitive load, as 
well as the complexity of navigation tasks and compu
tational modeling in real-world settings (Armougum 
et al. 2019; Richardson, Montello, and Hegarty 1999), 
thereby decreasing the accuracy and applicability of 
existing autonomous navigation methods (Michael 
M. Milford and Schulz 2014).

Beyond environmental complexity, limitations 
within existing autonomous navigation algorithms 
further compromise their real-world applicability. 
These systems predominantly rely on high-precision 
sensors to continuously collect and process large 
volumes of spatial information (Vivacqua, Vassallo, 
and Martins 2017; Zecca, Marks, and Smith 2019), 

leading to substantial computational demands and 
elevated energy consumption. Additionally, these 
algorithms often employ artificial neural networks 
and deep learning methods to enhance performance, 
while reduce the interpretability of the model. 
Consequently, achieving an optimal trade-off among 
energy efficiency, robustness, and transparency 
remains a persistent challenge. In contrast, the 
human brain performs complex navigation tasks 
with remarkably low power consumption by different 
functional regions and intricate neural network con
nections (Balasubramanian 2021). Therefore, it is 
necessary to understand and integrate the cognitive 
functions and connectivity mechanisms the human 
brain employs for processing geospatial information, 
and to address the existing challenges in power con
sumption, robustness, and interpretability of autono
mous navigation models through the learning and 
modeling of these mechanisms. By modeling these 
mechanisms, we aim to develop geospatial brain- 
inspired navigation systems that can efficiently per
ceive, memorize, process, and apply geospatial infor
mation in complicated real-world environments or 
even in extreme environments.

In this review, we focus on research on the cogni
tive mechanisms underlying information processing 
during navigation. In addition to studies involving 
humans, we select some related studies based on 
rodents, as invasive experiments on humans are not 
ethically justifiable. The central functional areas of 
navigation are anatomically preserved in mammals, 
suggesting functional homology between humans 
and rodents (Clark and Squire 2013). The empirical 
evidence offers suggestions for future research, from 
experimental design in real-world geospatial environ
ments to the development of geospatial brain-inspired 
navigation models that are highly robust, energy effi
cient and interpretable. Therefore, we suggest that 
researchers in the GIScience community revisit 
human brain cognitive mechanisms for processing 
complex, dynamic, multidimensional, real-time, and 
interactive geographic information during real-world 
navigation, with the aim of understanding these cog
nitive mechanisms and developing geospatial brain- 
inspired navigation models for novel autonomous 
navigation systems.

2. The cognitive mechanisms underlying 
geospatial information processing

2.1. What are the cognitive mechanisms?

The essential nature of cognitive mechanisms for 
processing geospatial information during navigation 
should be clarified. Specifically, each cognitive pro
cess of spatial navigation, such as spatial coding, 
landmark anchoring and route planning (Epstein 
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et al. 2017) engages unique cognitive mechanisms. 
The cognitive mechanisms underlying these pro
cesses involve how geospatial information is per
ceived, memorized, processed, and integrated at 
multiple levels, from microscopic neuron firing pat
tern and macroscopic brain regional activities to 
localized neurons/brain regions to entire neuronal 
circuits/brain networks to reveal unified/unique pat
terns. Understanding cognitive mechanisms at the 
neuronal and brain-region levels separately, as well 
as the regulation and feedback processes performed 
across these two levels, can provide valuable insights 
for developing models and algorithms to simulate 
and reproduce human-like intelligent behavior 
(Figure 1).

At the neuron level, cognitive mechanisms are 
primarily reflected in the neural firing activity of 
spatially tuned cells – such as place cells, grid cells, 
and head direction cells – as well as their coordi
nated interactions during spatial information encod
ing, typically recorded using invasive or implantable 
electrode techniques. At the brain-region level, cog
nitive mechanisms refer to the distinct functional 
roles of specific brain areas and their inter-regional 
connectivity, which together facilitate the integration 
and processing of geospatial information. This coor
dinated activity forms the basis for decision-making 
in navigational contexts. To investigate these pro
cesses at the brain-region level, neuroimaging tech
niques such as functional magnetic resonance 
imaging (fMRI), positron emission tomography 
(PET), electroencephalography (EEG), and magne
toencephalography (MEG) are commonly used to 
examine the functional roles of brain regions, their 
connectivity, the overall organization of functional 
networks, and the dynamic changes in these 

networks during the execution of complex behaviors 
or cognitive tasks.

2.2. How are cognitive mechanisms integrated 
into autonomous navigation models?

The current core functions and modules of autono
mous navigation models include mapping, localiza
tion and route planning (Ling and Shen 2017; Noh, 
Park, and Park 2020; Siagian, Chang, and Itti 2014). 
The traditional way for machines to accomplish these 
three tasks is to apply traversal ideas and algorithms to 
use relevant information in the environment and cre
ate fine-grained internal representation maps includ
ing the position of the machine in the environment; 
then, the optimal path is planned according to special 
rules (Cadena et al. 2016). Obviously, this method of 
mapping and planning is very different from how the 
human brain performs such tasks because a traversal- 
like mapping/planning process is not feasible owing to 
the memory capacity and energy consumption of the 
human brain. Thus, the critical limitations of existing 
autonomous navigation algorithms are low robust
ness, poor interpretability, and high energy consump
tion. If cognitive mechanisms can be learned and 
modeled by machines, machines may be able to pro
cess geospatial information as efficiently and cost- 
effectively as the human brain. In addition, the inter
pretability of the model may be significantly improved 
if the model mimics the cognitive processes of the 
human brain.

Autonomous navigation models are typically struc
tured into functional submodules (e.g. mapping, loca
lization, and planning modules) for distinct 
computational tasks. Similarly, human navigation 
also involves a series of cognitive subprocesses in 

Figure 1. Framework of geospatial brain-inspired navigation.
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human brain, including spatial coding, landmark 
anchoring, and route planning (Epstein et al. 2017). 
Therefore, submodules in navigation systems may 
need to be explicitly assigned to the cognitive mechan
isms of specific cognitive subprocesses, enabling more 
biologically inspired system designs. Cognitive 
mechanisms of human brain could be mathematically 
abstracted in the model through cognitive computa
tional modeling. Similar to cognitive mechanisms, 
mechanisms can be abstracted and expressed at differ
ent levels to develop brain-inspired navigation models 
with different applications. The representation of spa
tial relationships via neurons is currently the predo
minant approach. For example, cognitive map models 
have been constructed on the basis of the firing 
mechanisms of different neurons, such as place cells 
and grid cells, and their connections (Klukas, Lewis, 
and Fiete 2020; Zilli 2012). This approach focuses on 
modeling the activity of individual neurons and neural 
networks, emphasizing neuronal firing patterns, 
synaptic connections, and the dynamics of local net
works. Such models are generally suitable for naviga
tion tasks in simple environments, which include 
simple visual information, clear routes and obvious 
landmarks (Milford and Schulz 2014).

At the brain function and connectivity level, infor
mation flow and functional connectivity between 
brain regions are used in the construction of cognitive 
maps, with the aim of capturing global functional 
patterns rather than the fine-grained activity of indi
vidual neurons. However, there is no easy way to 
express these cognitive mechanisms abstractly in exist
ing autonomous navigation models. A major reason 
for this difficulty is that brain regions are usually not 
clearly responsible for only one function, and the 
synergy and cooperation of different brain regions 
are extremely complex. Owing to the ambiguity of 
cognitive mechanisms, abstracting such mechanisms 
in models for learning is very difficult. In the future, if 
the cognitive mechanisms at the level of brain function 
and connectivity are clarified, another major challenge 
will lie in how to effectively abstract and incorporate 
these brain-region level cognitive mechanisms into 
computational models. Neurodynamic approaches, 
such as attractor networks and oscillatory models, 
may offer promising solution, especially for simulating 
the flow and integration of information across brain 
regions (Barry and Burgess 2014; Burgess, Barry, and 
O’Keefe 2007).

Finally, the model should integrate information 
across multiple levels to adapt to environmental 
changes and achieve precise navigation in dynamic 
geographic spaces. A hierarchical model, which 
includes microlevel neuron modeling and macrolevel 
brain region activity modeling, can be considered in 
such cases. In hierarchical models, neural activity is 
translated into brain region activation, and feedback 

connections are used to adjust neuronal excitability or 
inhibition. Dynamical modeling and simulations can 
be used to capture the dynamic interactions between 
these levels, and differential equations or large-scale 
neural network simulations can be employed to 
observe the mutual influences of neural activities at 
the cell and whole brain levels (Breakspear 2017).

3. A review of current empirical studies on 
cognitive mechanisms

3.1. Cognitive mechanisms at the neuron level

Cognitive neuroscience research has demonstrated 
that spatial coding, landmark anchoring, and route 
planning are closely related to a variety of spatial 
information encoding cells in the brain, including 
place cells, grid cells, head direction cells, and bound
ary cells (Ekstrom et al. 2003; Epstein et al. 2017; 
Jacobs et al. 2013; Kim and Maguire 2019). These 
cells are located primarily in the hippocampus and 
entorhinal cortex within the limbic system of the 
brain and encode diverse types of spatial information. 
Place cells, which are located in the hippocampus, 
encode information about an animal’s location as it 
moves through an environment (O’Keefe and 
Dostrovs 1971), which is essential for the formation 
of cognitive maps. Grid cells, which are located pri
marily in the medial entorhinal cortex, provide 
a coordinate system for encoding spatial location 
information from place cells and integrating velocity 
and self-motion information, serving as a potential 
basis for path integration (Hafting et al. 2005; 
Whitlock et al. 2008). Owing to the functional char
acteristics of place cells and grid cells, these cells are 
believed to collectively encode allocentric spatial loca
tion information.

Successful navigation requires not only a clear sense 
of one’s own position but also a sense of non- 
allocentric information. Head direction cells encode 
the orientation of an animal’s head and were initially 
discovered in the presubiculum of rats, but subsequent 
research revealed their distribution in the entorhinal 
cortex and retrosplenial cortex (Sargolini et al. 2006; 
Taube, Muller, and Ranck 1990), and such cells are 
widely distributed throughout the entire limbic sys
tem. Additionally, other types of cells have been 
found, such as border cells (encoding the distance 
between themselves and the boundary) (O’Keefe and 
Burgess 1996), speed cells (encoding velocity informa
tion) (Kropff et al. 2015) and time cells (encoding time 
information) (MacDonald et al. 2011). Cells that 
encode spatial information constitute the intrinsic 
spatial localization system of the brain (Epstein et al.  
2017). Neural circuits in the entorhinal cortex and 
hippocampus constitute the core of the navigation 
and localization systems (Frank, Brown, and Wilson  
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2000; Tang, Li, and Yan 2010); these circuits support 
map-like spatial encoding, including the encoding of 
spatial representations (Epstein and Kanwisher 1998; 
Spiers and Gilbert 2015; Spiers and Maguire 2006), 
spatial distances (Deuker et al. 2016; Morgan et al.  
2011; Nielson et al. 2015), spatial memory (Epstein, 
Parker, and Feiler 2007; Kolarik et al. 2016; Maguire, 
Nannery, and Spiers 2006; Teng and Squire 1999), and 
spatial scale Evensmoen et al. (2015); Salgado-Pineda 
et al. (2017); Peer et al. (2019), as well as the imple
mentation of navigation strategies (Hartley et al. 2003; 
Iaria et al. 2003; Marchette, Bakker, and Shelton 2011).

In general, humans and animals encode their own 
position through population discharge vectors formed 
by many place cells in the hippocampus. When the 
same element is encountered again during navigation, 
specific place cells are activated, encoding the position 
within the environment by representing the spatial 
relationships between elements. Place cells also receive 
directional information from head direction cells and 
path integration (dead reckoning) information from 
grid cells in the entorhinal cortex. Grid cells integrate 
motion information from the vestibular system and 
represent the distance and directional information 
between different positions in the environment by 
integrating motion speed and direction information, 
which is passed to place cells for encoding. This pro
cess enables the creation of a representation of the 
spatial structure of the environment, leading to the 
generation of cognitive maps that represent spatial 
relationships. The cognitive mechanisms at the neu
ron level are primarily related to the encoding of 
spatial information, while the mechanisms underlying 
landmark anchoring and route planning remain 
unknown. These processes are more advanced and 
complex and may require the collaboration of many 
intraneuronal/neuronal circuits, and invasive experi
ments with normal human participants are difficult to 
perform.

3.2. Cognitive mechanisms at the brain region 
level

At the brain region level, the hippocampus and 
entorhinal cortex are the core brain regions responsi
ble for constructing cognitive maps (Cholvin, 
Hainmueller, and Bartos 2021; Epstein et al. 2017; 
Park et al. 2020). They are highly organized structures, 
and their interregional communication is a key com
ponent of spatial navigation (Jeffery 2007; Poulter, 
Hartley, and Lever 2018). In addition to the encoding 
of spatial information and the construction of cogni
tive maps, the cognitive map must be anchored to the 
real world by matching real-world locations with those 
on the map, which generally involves perceiving and 
recognizing landmarks and scenes in the environment. 
This process is associated with the occipital place area 

(OPA) (Julian et al. 2016; Kamps, Lall, and Dilks 2016) 
and the parahippocampal place area (PPA) (Epstein 
and Kanwisher 1998; Persichetti and Dilks 2019). 
Moreover, determining one’s position and orientation 
on the basis of perceived information is linked to the 
function of the retrosplenial cortex (RSC), which coor
dinates egocentric local scenes with broader allo
centric maps (Marchette, Ryan, and Epstein 2017; 
Meilinger 2008). Next, knowing the locations of 
other potential navigation points is crucial. While 
this information can be obtained from cognitive 
maps, studies have shown that long-term spatial 
knowledge is also encoded in the RSC (Vass and 
Epstein 2013). Unlike the cognitive maps encoded in 
the medial temporal lobe (MTL), the RSC may encode 
vectors representing only the most prominent or fre
quently traveled locations (Kuipers, Tecuci, and 
Stankiewicz 2003; Schinazi and Epstein 2010), facil
itating rapid path planning between familiar places. 
Finally, effective route planning between different 
locations is essential. Route planning is closely asso
ciated with the prefrontal cortex, and the neural cir
cuits between the prefrontal cortex and the medial 
temporal lobe support route planning (Chadwick 
et al. 2015; Howard et al. 2014) and the selection of 
optimal paths (Balaguer et al. 2016; Javadi et al. 2017; 
Kaplan et al. 2017).

Regarding the mechanisms at the brain region level, 
the functions of individual brain regions are better 
understood, but the functional connectivity between 
brain regions and the brain networks involved in 
geospatial information processing are less studied. 
Furthermore, while the prefrontal lobes have been 
shown to be critical for spatial decision making (e.g. 
route planning), the functions of the prefrontal lobes 
are extremely complex, and specific mechanisms in 
this region remain elusive; thus, further research is 
needed to determine how geospatial information is 
used for decision-making in brain networks.

4. Opportunities and challenges for future 
related research

4.1. Expanding cognitive mechanisms: from 
individual functions to functional connectivity and 
networks of brain regions

The cognitive mechanisms underlying geographic spa
tial navigation include mechanisms at both the neuron 
and brain region levels. Research on neuron-level cog
nitive mechanisms typically involves understanding 
how individual neurons represent spatial information 
and how multiple neurons work together to form 
functional circuits or networks. Researchers can 
explore how individual neurons process spatial infor
mation and communicate with other neurons through 
synapses, as well as the connectivity patterns between 
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neurons, the functions of local circuits, and how these 
circuits accomplish complex cognitive functions. 
These studies are often conducted via techniques 
such as optogenetics and connectomics and electro
physiological experiments (Kim, Adhikari, and 
Deisseroth 2017). While neuron-level cognitive 
mechanisms provide the foundation for brain region 
functions, isolated studies at the neuronal level cannot 
fully explain complex cognitive phenomena. For these 
reasons, as well as the difficulty of conducting this type 
of research with healthy people, future research in this 
area is not the focus of this study.

The interaction and coordination between various 
brain regions are essential for achieving the overall 
cognitive processes underlying geographic spatial 
navigation. Research on brain region-level cognitive 
mechanisms requires neurocognitive navigation 
experiments with high ecological validity to explore 
brain region responses, interregional connections, 
functional network organization, and dynamic 
changes in these networks during the execution of 
complex behaviors or cognitive tasks. First, it is neces
sary to identify the brain regions related to geographic 
spatial navigation, such as the hippocampus, entorh
inal cortex, parietal cortex, prefrontal cortex, and their 
subregions, and their functions during navigation. On 
this basis, the activity and interactions of the func
tional connectivity networks between these regions 
can be investigated. However, the flow of information 
and interactions between these regions are highly 
complex, making it a significant challenge to fully 
capture and understand their dynamic connectivity. 
Different brain regions may be involved in multiple 
cognitive processes simultaneously, making it difficult 
for researchers to isolate the independent roles of each 
region in specific cognitive tasks through single 
experiments or techniques. The study of brain region- 
level cognitive mechanisms requires recording and 
analyzing large-scale brain activity, yet current non
invasive brain imaging techniques (such as fMRI and 
EEG) have limitations in terms of both temporal and 
spatial resolution. A lower temporal resolution 
restricts the observation of rapid changes in brain 
activity, whereas complex connectivity within the 
brain cannot be captured with insufficient spatial 

resolution. Additionally, understanding the collabora
tion and connectivity between multiple brain regions, 
integrating neuronal activity to create macroscale 
brain region activities, and clarifying the complex 
coupling and feedback mechanisms across different 
levels pose substantial challenges.

4.2. Refining neurocognitive experiments to 
provide specialized evidence in complex and 
dynamic contexts

Integrating multiple experimental techniques to 
design geospatial brain-inspired navigation experi
ments with high ecological validity facilitates the 
exploration of cognitive mechanisms. Geospatial 
brain-inspired navigation experiments should evolve 
from survey-based assessments of behavioral perfor
mance, such as interviews and questionnaires 
(Hegarty et al. 2002; Vandenberg and Kuse 1978), to 
the use of neuroscientific experimental techniques to 
investigate the cognitive mechanisms underlying navi
gation behavior. Recent noninvasive neuroimaging 
experimental techniques in neuroscience and psychol
ogy, such as fMRI, EEG, functional near-infrared spec
troscopy (fNIRS), MEG and eye tracking, have 
significantly contributed to geospatial navigation 
research (Andersen et al. 2012; Liljeström et al. 2009; 
Lin, Chiu, and Gramann 2015; Mononen et al. 2025). 
Researchers can investigate the cognitive mechanisms 
involved in the navigation process in a targeted man
ner by using the adaptability of various technical 
approaches (Table 1). However, owing to the require
ments for ecological validity, geospatial navigation 
experiments still need to be adapted and adjusted 
from traditional neuroscience experiments. The spe
cific challenges and suggestions are related to two key 
aspects: complex environments and mobile properties 
for navigation. First, navigation behavior occurs in 
complex real-world environments; thus, the stimuli 
used in experiments should closely mimic those 
encountered in actual geospatial settings (Bülthoff 
and Veen 2001; Matusz et al. 2019). Second, the 
mobile nature of navigation should be considered in 
the design of experiments and the selection of experi
mental techniques (Park, Dudchenko, and Donaldson  

Table 1. The applicability and characteristics of different technological approaches.
Technique Applicability Temporal Resolution Spatial Resolution

fMRI Suitable for studying deep brain structures (e.g. hippocampus, entorhinal cortex) by 
measuring blood oxygenation changes linked to neuronal activity

Second-level (1 s-3 s) Millimeter-level (1 mm- 
3 mm)

EEG Suitable for capturing electrical signals from neuronal activity to analyze cortical 
dynamics

Millisecond-level (0.1 
ms-10 ms)

Centimeter-level (1 cm- 
10 cm)

fNIRS Suitable for inferring localized neural activity by measuring blood oxygenation 
changes

Subsecond 
to second-level (0.1 
s-1 s)

Centimeter-level (2 cm- 
3 cm)

MEG Suitable for detecting weak magnetic fields from neuronal activity to analyze cortical 
dynamics

Millisecond-level (1 
ms-10 ms)

Millimeter to centimeter- 
level (3 mm-10 mm)

Eye tracking Suitable for analyzing spatial cognitive processes via direct eye movement responses 
to external stimuli

Millisecond-level (0.5 
ms to 33 ms)

Angular resolution (0.5°-2° 
visual angle)
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2018). Therefore, a single experimental method is 
insufficient for accurately studying spatial information 
processing during navigation.

Navigation in real-world and ecologically valid set
tings involves rich, dynamic, and context-dependent 
environments. These environments contain complex 
spatial cues, diverse visual features, and task-relevant 
changes that place higher cognitive demands on per
ception, attention, and memory systems. However, 
many existing neuroscience experiments that often 
rely on highly controlled and simplify environmental 
settings, resulting in relatively straightforward percep
tual processing (Kay et al. 2008; Sadr 2011) but limit
ing the understanding of how human brain interacts 
with real-world scenarios. A series of studies examined 
the neurocognitive mechanisms involved in various 
navigation processes (Arajo, Baffa, and Wakai 2002; 
Cornwell et al. 2008; Liu, Dong, and Zhu 2019; Wirth 
et al. 2020; Miyakoshi et al. 2021), or in different 
groups such as sex (Kober and Neuper 2011), educa
tion level (Erkan 2018), and age (Lithfous et al. 2018) 
using noninvasive neuroimaging technique (e.g. fMRI, 
EEG and EEG). These studies typically require parti
cipants to remain stationary while viewing images or 
videos, and stimulus materials can be presented only 
through 2D monitors, which may cause neuroimaging 
results to diverge from actual neural activity (Taube, 
Valerio, and Yoder 2013).

In addition, the impact of mobile properties on 
ecological validity cannot be overlooked. Head move
ments are strictly limited when using static neuroima
ging methods such as fMRI; however, these 
movements are involved in actual navigation. While 
static imaging methods can elucidate the cognitive 
mechanisms associated with navigation, the lack of 
idiothetic information may compromise the accuracy 
of the identified navigation mechanisms (Chance et al.  
1998; Waller, Loomis, and Haun 2004). For example, 
stationary navigation tasks can result in sensory con
flicts and impaired performance because subjects must 
compensate for missing idiothetic information with 
alternative navigation strategies (Gramann 2013; 
Ladouce et al. 2017). Therefore, mobile brain/body 
imaging (Jungnickel et al. 2019) has the great potential 
to facilitate real-world navigation experimental setting 
with high ecological validity. Mobile EEG and fNIRS 
are valuable mobile imaging techniques that effectively 
accounts for sensory input resulting from body move
ment and can be used to measure neural activity while 
subjects move freely (Atsumori et al. 2010; Piper et al.  
2014). Innovative data analysis methods for mobile 
EEG devices have been developed to overcome the 
control issues associated with stimulus presentation 
with traditional brain imaging techniques in real- 
world settings, providing high ecological validity 
(Wunderlich and Gramann 2021). Mobile eye tracking 
has been widely employed to investigate visual 

attention behavior (Dong, Liao, and Zhan 2019; Liao 
et al. 2019; Dong et al. 2022) during wayfinding pro
cesses in real-world or virtual environments. 
Considering motion devices integrated with virtual 
reality (VR), including VirtuSphere and CyberWalk, 
have been developed to provide a more natural sense 
of movement in immersive environments (Hardiess, 
Mallot, and Meilinger 2015), integrate these VR set
ting with mobile brain/body imaging techniques could 
provide a more controlled but high ecological validity 
setting for navigation experiment.

Building on the potential of mobile brain/body 
imaging and VR-integrated settings, researchers 
have begun combining techniques such as EEG 
and eye tracking to investigate navigation-related 
cognitive processes with greater ecological validity. 
For instance, studies have utilized these methods to 
assess cognitive loads during map-reading tasks 
(Keskin et al. 2020), evaluate the effectiveness of 
navigational aids (Ying, Dong, and Fabrikant  
2024), and identify activities performed on maps 
(Qin et al. 2024). These approaches capture 
dynamic neural and visual attention data in real- 
world or simulated environments, offering insights 
into spatial cognition that static methods cannot 
provide. However, each technique has limitations, 
such as constrained temporal or spatial resolution 
and varying suitability for mobile tasks (Friedrich 
et al. 2016). To comprehensively explore the neural 
mechanisms underlying geospatial information 
processing during navigation, integrating multiple 
experimental methods through carefully designed 
studies is essential. For instance, fMRI serves as 
the primary noninvasive technique for imaging 
deep brain structures, such as the entorhinal cortex 
and hippocampus, enabling the recording of neural 
activity within the entorhinal-hippocampal loop. 
However, its low temporal resolution and the 
necessity for participants to remain stationary dur
ing scanning restrict its utility in mobile tasks. 
Despite the absence of idiothetic information, the 
memory and planning systems contribute to the 
formation of cognitive maps, and fMRI remains 
the predominant method for studying these cogni
tive maps and their neural representations (Epstein 
et al. 2017). Therefore, different techniques can be 
used in conjunction with fMRI to explore the 
mechanisms of processing representations of per
ceptual information in deep brain structures. 
Integrating synchronized eye-tracking data with 
fMRI enhances spatiotemporal resolution and aids 
in uncovering the relationships between complex 
cognitive processes and brain functions (Peitek 
et al. 2018). This approach is particularly valuable 
for tasks such as reading, visual search, and scene 
comprehension, as simultaneous recording of eye- 
tracking trajectories and brain responses enables 
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a more comprehensive understanding of cognition 
(Richlan et al. 2013). Combining fMRI and EEG 
enables brain activity to be recorded with high 
spatial and temporal resolution (Cichy and Oliva  
2020). This combination has been shown to be 
useful for a variety of studies, including the locali
zation of psychiatric disorder foci, the involvement 
of different brain cellular discharges, and insights 
into how the brain functions in different states or 
responds to various stimuli (Gotman and Pittau  
2011; Laufs et al. 2003; Ritter and Villringer 2006).

Additionally, fNIRS can easily be integrated with 
other methods, such as EEG (Ahn et al. 2016; Chen 
et al. 2015), leading to enhanced temporal and spa
tial resolution and improving the feasibility of 
mobile imaging for navigation tasks in realistic 
environments. Although mobile imaging devices are 
limited in their ability to accurately reflect neural 
activity in deep brain structures, their use provides 
a better understanding of the role of motion infor
mation in navigation, complementing the dynami
cally relevant data not available through fMRI alone 
(Park, Dudchenko, and Donaldson 2018). In parti
cular, combining multiple techniques to obtain mul
timodal neural data allows researchers to obtain 
a more comprehensive understanding of brain activ
ity. For example, fMRI can be used to determine 
activation in the entorhinal cortex and hippocampus, 
whereas fNIRS and EEG can be used to monitor 
cortical activity during actual motor tasks. 
Although fNIRS has centimeter-scale spatial resolu
tion, due to the high degree of correspondence 
between fNIRS and fMRI data, fNIRS can provide 
supplementary information for exploring deep brain 
structures (Cui et al. 2011)

However, comprehensive experimental studies using 
various techniques face several challenges. In MRI 
environments, correcting EEG artifacts, such as gradient 
and pulse artifacts, is essential for accurately reflecting 
brain activity (Mullinger and Bowtell 2011). Effective 
artifact correction is crucial for accurate EEG analysis. 
Moreover, collecting EEG and fMRI data requires the 
use of MRI-compatible EEG equipment to prevent 
interference and ensure safety without compromising 
image quality. Combining EEG and fNIRS involves 
addressing motion artifacts and light interference issues 
(Makeig et al. 2009; McIntosh et al. 2010), which can be 
mitigated through the use of improved sensors (Khan 
et al. 2012) and algorithms such as principal component 
analysis (PCA) and independent component analysis 
(ICA) (Delorme, Sejnowski, and Makeig 2007; Herold 
et al. 2017). Integrating multimodal data necessitates the 
development of new analytical methods and advanced 
computational techniques. Furthermore, participant 
safety and comfort remain concerns during extended 
tasks. Despite these challenges, the results of compre
hensive experiments continue to provide unparalleled 

insights into the brain mechanisms underlying naviga
tion, driving ongoing research efforts.

4.3. Developing geospatial brain-inspired 
navigation algorithms that mimic cognitive 
mechanisms of the human brain

Existing brain-inspired navigation models are typi
cally autonomous navigation models based on the 
construction of cells that encode spatial information. 
Researchers have improved existing autonomous 
navigation models by adopting the approaches 
through which animals encode spatial information. 
For example, Milford, Wyeth, and Prasser (2004) 
developed RatSLAM, an approximate computational 
model based on the hippocampal complex. RatSLAM 
simulates the place field function of place cells in the 
hippocampus (i.e. neural activity patterns correlated 
with spatial location) to achieve self-localization and 
map construction. Milford et al. further expanded 
RatSLAM by integrating visual features of the sur
rounding environment into an “experience map,” 
which works as a hippocampal cognitive map 
(Milford, Prasser, and Wyeth 2005). The experience 
map enables a robot to reset its localization error by 
revisiting known areas (referred to as loop closure). 
The construction of this computational model is simi
lar to the “predictive processing” paradigm proposed 
in Hohwy’s brain function model (Hohwy 2013). This 
paradigm suggests that the brain processes informa
tion through continuous model refinement via the 
interactions between top-down predictions (from 
higher cognitive areas) and bottom-up sensory inputs 
(from sensory organs). Furthermore, in Milford’s 
brain-inspired navigation model, an experience map 
is constructed by encoding spatial information from 
perceived landmarks and scenes and then using loop 
closure detection to continuously refine this map. In 
subsequent studies, additional mechanisms have been 
incorporated into models to encode spatial informa
tion, such as grid cells and head direction cells (Tang, 
Yan, and Tan 2018; Yu et al. 2019; Zeng and Si 2017; 
Zeng et al. 2020; Zhou, Weber, and Wermter 2018). 
Some studies, inspired by the functional connectivity 
between CA1 and CA3 in the hippocampus formation, 
have integrated this mechanism into existing autono
mous navigation models (Nakashima et al. 2024). This 
integration has improved the self-localization perfor
mance of these models in simulated environments, 
further demonstrating that incorporating cognitive 
mechanisms can enhance autonomous navigation 
algorithms. However, these models demonstrate 
insufficient generalizability in real-world environ
ments and struggle to adapt effectively to dynamic 
changes in actual geographic spaces. Behavior and 
cognition arise from the interplay among various 
brain regions; no neuron functions in isolation 
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(Thiebaut De Schotten and Forkel 2022). Thus, effec
tive navigation in complex real-world environments 
remains challenging with existing navigation models, 
possibly because of their dependence on spatial metric 
representation mechanisms at the neuron level, with
out integrating higher cognitive functions.

Exploring the cognitive mechanisms underlying 
spatial navigation and effectively integrating them 
with existing deep neural networks can be beneficial 
for addressing the challenges of power consumption, 
robustness, and interpretability faced by current mod
els and algorithms. This integration can use the high 
interpretability of cognitive data to address the low 
interpretability of current navigation models. Deep 
learning-based neural networks have demonstrated 
excellent performance in object and scene recognition, 
with network units potentially encoding information 
from the mammalian visual cortex (Agrawal et al.  
2014; Güçlü and Van Gerven 2015; Yamins et al.  
2014). This finding indicates that cognitive data can 
be used to enhance model interpretability. For exam
ple, Banino et al. (2018) developed a deep reinforce
ment learning agent for navigation tasks on the basis 
of the computational functions of grid cells. The 
model uses hidden nodes to read motion memories 
stored in long short-term memory (LSTM) networks, 
generating firing patterns similar to those of grid cells, 
head direction cells, and boundary cells. This study 
provides evidence supporting the neuroscience theory 
that grid cells aid in navigating to hidden goal loca
tions via direct routes that may traverse previously 
unvisited places (vector-based navigation). Moreover, 
some studies have used the hippocampus’s potential 
ability to encode and predict future locations to con
struct a “predictive map.” This map is then dimen
sionally reduced through grid cell modeling in the 
entorhinal cortex to facilitate hierarchical planning 
(Stachenfeld, Botvinick, and Gershman 2017). This 
approach not only provides an interpretation of exten
sive data from hippocampal research but also opti
mizes the reward mechanism in reinforcement 
learning, thereby enhancing the biological plausibility 
of the model. Other reinforcement learning-based 
navigation models have used neural mechanisms 
encoding spatial information to optimize reinforce
ment learning algorithms or enhanced the interpret
ability of these models by incorporating neural data 
from diverse sources and levels (Anggraini, Glasauer, 
and Wunderlich 2018; De Cothi et al. 2022; Mattar 
and Daw 2018). However, although this approach 
enhances the interpretability of computational mod
els, their robustness remains low, and existing models 
remain inadequate for real-world navigation 
deployment.

Furthermore, brain-inspired navigation models 
built based on deep neural networks inherently differ 
from the brain in their processing of perceptual 

information. For example, the backpropagation (BP) 
algorithm lacks biological plausibility (Grossberg  
1987). This discrepancy may underlie the substantial 
differences in robustness and energy efficiency 
between BP-based models and the brain. The lack of 
understanding of the cognitive mechanisms involved 
at different levels of the navigation process may also 
contribute to the reliance on existing artificial neural 
networks to approximate and optimize these mechan
isms. This, in turn, may be another potential cause of 
inefficient use of computational resources, increased 
power consumption, and limited model interpretabil
ity. A feasible approach to constructing geospatial 
brain-inspired navigation models is to base such mod
els on cognitive mechanisms at different levels 
through hierarchical modeling, cross-level informa
tion integration, dynamic modeling and simulation, 
and validation and refinement with experimental data 
(Dyhrfjeld-Johnsen et al. 2002). This approach enables 
interactions between neuron-level activity and brain 
region-level functional expression. Furthermore, such 
a model may capture the feedback regulation of 
macrolevel brain region activity on microlevel neuro
nal activity, providing a comprehensive framework for 
understanding how the brain generates complex geo
graphic spatial navigation behaviors across different 
levels. Meanwhile, the development of more efficient 
model architectures with higher biological plausibility 
requires sophisticated experimental designs, with var
ious experimental techniques integrated to improve 
our understanding of the cognitive mechanisms of 
the human brain during spatial navigation.

Finally, these mechanisms are integrated with 
computational hardware. For example, neuro
morphic chips consume substantially less energy 
than do conventional computing chips (Merolla 
et al. 2014). The chips can simulate this perceptual 
encoding process, receiving environmental informa
tion through neuromorphic sensors and encoding it 
within spiking neural networks (SNNs). These 
neural networks can be designed to simulate the 
structure and function of brain regions related to 
navigation, such as the hippocampus, enabling the 
effective encoding of spatial information with low 
power consumption. For instance, neuromorphic 
chips incorporating cellular and neural circuit 
mechanisms have been successfully employed for 
2D planar navigation in both virtual and laboratory 
environments (Fleischer et al. 2007; Zeno, Patel, and 
Sobh 2017). Similar to neuromorphic chips, new 
brain-inspired robots exhibit notable advancements 
in reducing both latency and power consumption 
across various tasks (Ma et al. 2022; Yu et al.  
2023). The advancements in neuromorphic hardware 
and brain-inspired systems not only demonstrate 
practical benefits in energy efficiency and spatial 
navigation but also open new avenues for research 
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in geospatial brain-inspired navigation. By lever
aging human cognitive neuroscience data, such 
research enhances the interpretability of computa
tional models and deep learning algorithms, while 
simultaneously addressing challenges related to 
robustness and energy consumption through the 
modeling of cognitive mechanisms. Consequently, 
the GIScience community’s interest in spatial cogni
tion should extend beyond behavioral observations 
to encompass the underlying neural processes. 
Adopting interdisciplinary approaches that integrate 
these neural insights with computational innovations 
will be critical to overcoming current limitations. 
Such efforts promise to propel the GIScience field 
forward, fostering the development of advanced 
intelligent systems, including GeoAI, with broader 
applications in spatial analysis and beyond.

5. Conclusions

The adaptability and power consumption limitations 
of traditional autonomous navigation models make it 
challenging for existing models to perform autono
mous navigation tasks in complex geographic envir
onments. This challenge necessitates the application of 
innovative interdisciplinary approaches to identify the 
neural cognitive mechanisms underlying navigation 
and to construct brain-inspired computational models 
for geospatial navigation. These new approaches 
require GIScience researchers to deviate from tradi
tional paradigms and apply novel methods from other 
fields, which has long been difficult among GIScience 
researchers. The primary goal of this paper is to pro
mote such interdisciplinary research. We believe that 
our proposed framework, which employs various cog
nitive neuroscience methods to comprehensively 
investigate the spatial information processing 
mechanisms underlying navigation, will help in the 
development of interdisciplinary approaches for navi
gation research. Finally, we hope that such an 
approach will improve our understanding of human 
navigation mechanisms and lead to the development 
of highly robust, low-energy-consumption, and inter
pretable geospatial brain-inspired navigation models 
that can be deployed in real-world environments.
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