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A B S T R A C T

Towards the era of Heterogeneous Intelligence (HI) coexistence, this paper reviews the latest progress of Visual 
Simultaneous Localization and Mapping (VSLAM) and explores the pathway of multiple HI integration-driven 
VSLAM systems. This work analyzes over 220 selected publications, with a literature cut-off date of 
September 2025, with papers distributed across the evolution of frontend Visual Odometry (VO), Loop Closure 
Detection (LCD), backend optimization and mapping. Moreover, it also discusses the support of heterogeneous 
hardware, including state-of-the-art sensors and processors. Finally, it analyzes the challenges and opportunities, 
proposes a novel VSLAM framework from the view of HI integration, and provides forward-looking suggestions. 
This study indicates that the cross-paradigm HI integration has the potential to transform current VSLAM 
technologies from “tool-oriented” to “cognition-oriented,” providing new ideas and pathways for the next- 
generation VSLAM development.

1. Introduction

1.1. Background

Nowadays, the rise of the third wave of Artificial Intelligence (AI) is 
an undeniable reality. Advances in Machine Learning (ML) and Deep 
Learning (DL), coupled with explosive growth in computing power and 
data availability, have spurred widespread AI applications across 
various domains [1]. Current DL, however, is data-driven and dominant 
in specific tasks, yet far from human-level general intelligence. Towards 
the target of Artificial General Intelligence (AGI) development, 

brain-inspired intelligence is increasingly recognized as a pivotal 
approach to bridge this gap [2]. Meanwhile, the global push for quan
tum intelligence highlights the hybrid nature of the Heterogeneous In
telligence (HI) coexistence era.

Navigation has always been an important starting and end point of 
machine intelligence, underpinning the emergence of embodied intel
ligence [3,4]. Since localization and mapping are essential tasks for 
navigation, Simultaneous Localization and Mapping (SLAM) has been 
studied for over three decades. Visual SLAM (VSLAM), a key imple
mentation of SLAM, consists of five main components: data processing, 
Visual Odometry (VO), Loop Closure Detection (LCD), backend 
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optimization, and mapping [5]. Their joint optimization and simulta
neous operation form a complete SLAM system.

Traditional VSLAM builds on mathematical paradigms, with a robust 
theoretical basis, yielding milestone solutions such as ORB-SLAM [6]. 
However, it struggles in complex settings due to issues like feature 
extraction failure, scale drift, and limited scene understanding [7]. 
Data-driven AI paradigms greatly mitigate these issues and excel in VO, 
LCD, and mapping [8]. Examples include UnDeepVO [9] for DL-based 
monocular VO, Airloop [10] for lifelong learning-based LCD, and 
DS-SLAM [11] for dynamic semantic mapping.

Brain-inspired SLAM, emerging beyond classical methods, emulates 
the brain’s navigation mechanisms via neurodynamic models [12]. 
Advances like RatSLAM [13] and NeuroSLAM [14] use Continuous 
Attractor Neural Networks (CANNs) to mimic the brain’s path integra
tion logic, rebuilding the backend optimization while fitting VSLAM 
frameworks. Progress also includes brain-inspired Visual Place Recog
nition (VPR) [15–18] and ANN2SNN methods such as SpikingJelly [19]
for converting DL to Spiking Neural Networks (SNNs).

Traditional VSLAM systems employ mature visual sensors, providing 
practical solutions, such as the ORB-SLAM series [6,20,21]. AI cameras 
also warrant attention [22]. Recently, bionic cameras have been used to 
enhance robustness in low-texture environments [23]. Moreover, neu
romorphic cameras [24] excel in challenging settings (e.g., motion blur 
and latency), offering high efficiency, low latency and power con
sumption, expanding VSLAM capabilities [25,26].

Despite advances in Central Processing Units (CPUs), Graphics Pro
cessing Units (GPUs) and AI processors, von Neumann architectures still 
lag behind the brain’s spatiotemporal representation and generalization. 
Drawing on neuroscience insights, the state-of-the-art neuromorphic 
chips, such as the Tianjic [27] and SpiNNaker2 [28], support a hybrid HI 
integration of AI and brain-inspired paradigms. This represents the chip 
designers’ response in the era of HI coexistence.

1.2. The connotation of the “Era of HI Coexistence” and its manifestation 
to VSLAM

As known, machine’s intelligence is realized through both software 
and hardware. Software’s intelligence relies on advanced algorithms 
and computational paradigms, while hardware provides perceptual in
formation, computing resources, serving as the carrier. Today’s era is 
marked by the coexistence of multiple paradigms, including mathe
matical computing, AI, brain-inspired intelligence, and even quantum 
intelligence. For brevity, this paper terms this the “Era of Coexistence of 
HI.” In this context, we firstly need to determine the manifestations of 

these different intelligence paradigms with obviously heterogeneous 
natures (collectively referred to as HI) in VSLAM research.

On the one hand, although multiple HI paradigms coexist in the 
current era, not all VSLAM research has integrated more than one HI 
paradigm. This means that a VSLAM system can benefit from a single 
paradigm’s contributions but may also face certain challenges. On the 
other hand, a VSLAM system can also benefit from the integration of 
different HI paradigms. Specifically, within the VSLAM framework, 
components can be implemented by diverse computing paradigms. 
Furthermore, a VSLAM system can configure heterogeneous sensors and 
processors for complementary environmental perception and perfor
mance optimization. In other words, a VSLAM system can be improved 
through cross-paradigm integration (Fig. 1).

1.3. Motivation and innovation declaration

In the above two manifestations, the former is common, while the 
latter is emerging. Therefore, this unique backdrop offers the VSLAM 
community significant opportunities for innovation and may even 
prompt a transformation in its research paradigm.

However, no existing work has systematically surveyed VSLAM 
technology in the era of HI coexistence, explored cross-paradigm HI 
integration pathways, or analyzes challenges and opportunities. This 
gap forms our motivation. Therefore, this paper not only provides a 
comprehensive review of VSLAM advances benefited from different HI 
paradigms, but also dissects the trend of cross-paradigm HI integration- 
empowered VSLAM. It analyzes over 220 selected publications, with a 
literature cut-off date of September 2025, with papers distributed across 
the evolution of VO, LCD, backend optimization and mapping.

To clarify the unique positioning and innovation of this work, a 
comparison with representative surveys is detailed in Table 1. The 
contributions are as follows: 

1) This paper, towards the HI coexistence era, systematically dissects 
the VSLAM progress from a multi-dimensional perspective and 
carries out in-depth discussions and analyses.

2) This paper summarizes the roadmap of VSLAM systems empowered 
by cross-paradigm HI integration and proposes a unified framework 
for VSLAM system (See Section VII).

3) This paper prospectively analyzes the opportunities and challenges 
of VSLAM technology in the era of HI coexistence, offering the 
forward-looking perspectives and suggestions.

Note. Since quantum intelligence is still in its germination stage, it is 

Fig. 1. The VSLAM framework.
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not included in the scope of this study.

1.4. Outlines

Sections II to V systematically review and analyze the key advances. 
Section VI summarizes hardware support for system-level VSLAM 
development. Section VII proposes a unified VSLAM framework suitable 
for HI integration and discusses opportunities and challenges. Section 
VIII offers forward-looking perspectives and concludes the paper.

2. VO progress

The VO task involves extracting environmental information from 
images and estimating camera motion between adjacent images based 
on the geometric relationship between the camera and spatial points. 
This section systematically reviews VO progress, with corresponding 
discussion and analysis.

2.1. Traditional VO

Traditional VO methods are often categorized into feature-based and 
direct methods. Feature-based methods detect salient points using 
handcrafted descriptors, compute their matching relationships, and es
timate camera motion via the Perspective-n-Point (PnP) or Bundle 
Adjustment (BA) methods [38]. The ORB-SLAM series, utilizing point 
feature-based VO, are widely recognized in the VSLAM community. In 
addition, line and edge features are stable and easily extracted in 
structured settings, reduce complexity and can be combined with point 
features [39–41]. For example, StructSLAM [42] employs architectural 
lines to reduce drift error. MonoSLAM [43] addresses tracking failure in 
texture-less environments by extracting points, lines, and vanishing 
points for feature complementarity. Cai et al. [44] review common 
handcrafted descriptors (e.g., point, line, edge, corner, and region 
features).

Feature-based methods dominate VO but discard most image infor
mation. In contrast, direct methods estimate camera motion by mini
mizing photometric errors using pixel grayscale information from two 
frames, relying on grayscale invariance and nonlinear optimization. 
Direct methods can be categorized into sparse, semi-dense, and dense 
forms based on the number of pixels used. For example, DTAM [45], the 
progenitor of direct methods, generates dense maps and camera poses by 
aligning the entire image. LSD-SLAM [46] is a typical semi-dense direct 
method. Direct Sparse Odometry (DSO) [47] is a sparse direct method, 
estimating camera motion by minimizing sparse photometric errors for 
efficient computation. FD-SLAM [48] is a dense method, using 
frame-to-model to align input frames with active submaps via joint 
optimization of geometric and photometric errors. Beyond the above, 
semi-direct VO solutions combine the strengths of feature-based and 
direct methods to balance computational efficiency and accuracy [49]. 
Semidirect Visual Odometry (SVO) [50] is a typical example.

2.2. AI-enabled VO

Unlike traditional methods, AI-enabled VO can learn robust repre
sentations (e.g., depth, optical flow, feature points) automatically, and 
show promise in overcoming limitations of handcrafted features and 
environmental adaptivity [8,51]. This has led to renovation of the 
VSLAM frontend. Following AlexNet’s breakthrough in ImageNet [52], 
the powerful ability of Convolutional Neural Networks (CNNs) led 
directly to the creation of PoseNet [53], marking the beginning of 
data-driven VO paradigms.

Supervised learning drives end-to-end training with ground-truth 
values. For example, DeepVO [54] uses a supervised CNN-LSTM 
network to capture spatiotemporal dependencies in image sequences 
for predicting VO trajectories. DytanVO [55] introduces a dynamic 
perception module optimized via curriculum learning for dynamic ob
ject segmentation and pose estimation. GANVO [56] enhances pose 
estimation accuracy with optical flow consistency constraints in its 
discriminator, while the generator produces depth maps, creating a 
mutually reinforcing optimization mechanism. STDN-VO [57] mimics 
the human visual system’s dual-stream mechanism, extracting spatial 
and temporal features with different networks and fusing them to pre
dict poses, significantly enhancing VO accuracy.

Recently, unsupervised and self-supervised VO methods have gained 
prominence due to the scarcity of labeled data. Unsupervised methods, 
pioneered by works like Zhou et al. [58] and GeoNet [59], use inherent 
geometric constraints in multi-view imagery as a supervisory signal, 
eliminating the need for external labels. Wang et al. [60] resolve scale 
ambiguity in monocular VO via joint training of depth, optical flow, and 
scale networks without annotated data. Self-supervised methods like 
[61] report a Graph Neural Networks (GNN)-based solution with posi
tional constraints for robust feature matching in harsh environments. 
D3VO [62], a self-supervised VO, can jointly estimate depth, pose, and 
uncertainty for high-precision pose estimation. As a self-supervised 

Table 1 
Comparison with existing representative surveys.

Works Year Main Focus / Scope Distinction from Our Work

[7] 2016 A review charting SLAM 
evolution towards the 
“Robust-Perception Age.”

■ Its focus is on robust 
perception in SLAM, with a 
different purpose from ours.

■ Our work covers a broader 
and more comprehensive 
scope.

[29] 2017 A review of VSLAM advances 
within a specific timeframe 
(2010–2016).

■ Review from both technical 
and historical points of 
views.

■ Its main effort is devoted to 
the review of traditional 
methods.

[30] 2022 A comprehensive survey of 
state-of-the-art on VSLAM 
before 2022

■ Its focus is on 
comprehensive review of 
feature-based VSLAM with 
simulations.

■ Its scope includes traditional 
and DL methods, forming a 
subset of this work.

[31] 2019 A problem-specific review 
focused on VSLAM for 
dynamic environments.

■ Its main focus is on a specific 
issue in VSLAM 
applications.

■ Our work is a 
comprehensive survey with 
a forward-looking 
perspective.

[32] 2024 A review on the impacts of 
Neural Radiance Fields 
(NeRFs) and 3D Gaussian 
Splatting (GS) to SLAM.

■ Its focus is on specific, 
groundbreaking 
technologies’ contribution 
to SLAM.

■ Our work is a 
comprehensive survey with 
a forward-looking 
perspective.

[8] 2024 Two focused surveys on the 
application of DL techniques 
across the VSLAM pipeline.

■ Their purposes and scopes 
are dedicated on pure DL- 
based VSLAM research.

■ Our work covers a broader 
and more comprehensive 
scope.

[33] 2023

[24] 2024 Two specialized surveys on 
event-based vision and 
VSLAM.

■ Their purposes and scopes 
are dedicated on pure event- 
based VSLAM research.

■ Our work covers a broader 
and more comprehensive 
scope.

[34] 2022

[35] 2022 Three reviews of VPR/LCD, a 
specific module within the 
VSLAM framework.

■ Their scopes are component- 
specific surveys, forming a 
subset of this work.

■ Our work covers a broader 
and more comprehensive 
scope.

[36] 2021
[37] 2015

S. Su et al.                                                                                                                                                                                                                                        Neurocomputing 669 (2026) 132458 

3 



semantic VO method, InstanceVO [63] performs motion estimation, 
depth prediction, and instance segmentation using a shared encoder. In 
addition, some studies have explored weak-supervised [64] and 
semi-supervised [65] VO methods.

Beyond the above, recent hybrid VO methods developed through the 
joint optimization of traditional and learning-based paradigms show 
promise. Lu et al. [66] incorporate pose graph and BA optimization into 
DL network training for unsupervised monocular VO, preventing pose 
drift via joint optimization. DF-VO [67] enforces physical consistency 
between CNN-predicted depth and feature-based optical flow using a 
dual-branch architecture and differentiable BA. GraphAVO [68] fuses 
pixel motion information with graph-assisted optimization and cascaded 
dilated convolutions to enhance pose estimation accuracy and robust
ness. DPVO [69], building on DROID-SLAM [70], replaces dense optical 
flow tracking with a sparse strategy that tracks random tile subsets. It 
significantly reduces computational load and demonstrates higher ac
curacy for monocular VO without dense optical flow tracking. 
DPV-SLAM [71] then extends DPVO to form a complete, real-time, 
low-memory monocular VSLAM system.

2.3. Event-based VO

Neuromorphic event cameras capture pixel-level brightness changes 
instead of fixed-frame-rate intensity images, offering advantages in low- 
light and high-speed motion scenarios where traditional cameras 
struggle [34]. This has led to the emergence of event-based VO solutions.

For example, EventPointNet [72] converts event data into time 
surfaces, extracts Harris corner features, and trains a network for key
point detection, achieving event-based VO through feature matching 
and pose estimation. Hadviger et al. [73] and Zhou et al. [74] both 
proposed event-based stereo VO methods. The former relies on time 
surfaces for feature detection and pose estimation by minimizing 
reprojection error. The latter uses time surfaces to create spatiotemporal 
data, estimates inverse depth with nonlinear optimization, fuses depth 
into a semi-dense map, and tracks the camera in real time. Similar 
methods are found in [75–77]. In 2022, Hidalgo-Carrio et al. [77] pro
posed an event-aided direct sparse odometry method that tracks camera 
motion by fusing event and grayscale frames, enabling accurate 6-DoF 
estimation.

In addition, several studies have integrated traditional visual data 
with event data to develop hybrid VO with heterogeneous camera data. 
For instance, RAMP-VO [78] fuses event and image data using a 
pixel-level asynchronous feature extractor, integrates features across 
scales with a multi-scale fusion module, and optimizes state estimation 
with differentiable BA constraints. Zhu et al. [79] enhance event-based 
VO using adaptive time surface to select distinctive pixels and design a 
nonlinear pose optimization method combining RGB-D and event data 
to improve pose estimation accuracy and robustness. In addition, several 
works integrate Inertial Measurement Units (IMUs) to develop 
event-based Visual-Inertial Odometry (VIO) solutions [80–82].

2.4. Periodic discussion

The essence of VO lies in using changes in the camera’s perspective to 
design effective rules to infer its pose changes. Traditional VO methods, 
based on mathematical paradigms, have a solid theoretical foundation 
and have achieved practical success in engineering, building on over 30 
years of research. Currently, most mathematical paradigm-based VO 
solutions ensure real-time efficiency on conventional commercial-grade 
edge devices. Moreover, new solutions such as 360 VO [83] continue to 
emerge. However, they face limitations such as poor adaptability and 
robustness in low-texture settings, sensitivity to lighting changes and 
motion blur in dynamic scenes. These factors form the driving force 
behind the development of AI-enabled VO methods in recent years.

AI-enabled VO methods excel in representation learning for adaptive 
feature representation and multi-task optimization. When computing 

power is not a constraint, they can obviously overcome limitations of 
handcrafted features, outperforming traditional VO in unstructured and 
low-texture scenes. Recently, AI-enabled VO research has trended to
ward label-free approaches. Some hybrid VO methods that integrate the 
strengths of learning-based and traditional optimization methods are 
promising. However, the limitations of AI-enabled VO solutions ought to 
be highlighted as well. They still face challenges and may fail in dynamic 
scenes and out-of-distribution conditions due to poor generalization, 
weak real-time performance, and invalid representations from motion 
blur and lighting changes.

Event-based VO has gained momentum recently, due to its High 
Dynamic Range (HDR) and event-driven characteristics, which can 
counteract dynamic blur. Current event-based VO solutions are rapidly 
developing with diverse ideas coexisting. However, the asynchronous 
spiking nature of event data requires additional processing steps, with 
the time surface method being widely adopted. Moreover, although 
event cameras are highly sensitive to dynamic changes, they suffer 
significant texture loss. Moreover, there have been no new advances in 
event cameras capturing depth like depth cameras. Thus, pure event 
camera-based VO cannot fully replace traditional VO. Therefore, some 
researchers have also reported strategies that combine the strengths of 
event cameras with traditional cameras, like [78]. However, this area 
remains underdeveloped. For example, integrating event camera’s 
asynchronous spiking outputs with traditional visual frames still faces 
challenges, as hard synchronization issues may need to be considered.

The above discussions mainly focus on VO progress with individual 
HI paradigms. Building on this, we identify several open challenges. 
Apart from AI’s generalization, this paper attempts to address other is
sues from the perspective of HI integration, hoping to inspire the related 
community. 

1. How to ensure generalization of AI-enabled VO algorithms? The 
generalization ability of AI-enabled VO is constrained by its data- 
driven logic. Since data scarcity and distribution bias are objective 
reality, training data for VO is often limited and unlabeled, making it 
hard for DL models to learn universal representations from incom
prehensive samples. 

Yet, in LCD, lifelong learning-based solutions like AirLoop [10]
show promise in cross-domain generalization, whilst the AI-enabled 
VO solutions like DPVO [69] focus on zero-shot generalization. 
Maybe, we can consider to combining lifelong learning, 
few-shot/zero-shot learning, and even meta learning to keep the 
performance and robustness of AI-enabled VO methods under 
cross-domain or out-of-distribution conditions.

2. How can we balance computational efficiency and performance? 
Taking [84], it integrates three parallel threads into ORB-SLAM3 for 
dynamic disturbance elimination and background completion, 
equipping traditional VO with AI capabilities to improve accuracy 
and adaptability. However, this also causes latency and increases 
computational demands. Similar issues are common in many works 
reviewed in [31]. 

Regarding this, we believe that focusing solely on a single para
digm is somewhat limited. Integrating multiple HI paradigms with 
software-hardware considerations might bring new insights. For 
example, integrating approaches like Spiking-Yolo [85] into tradi
tional VO and deploying it on neuromorphic processors (see Section 
VI) could reduce power consumption and latency while maintaining 
accuracy in dynamic object segmentation and filtering.

3. How can we seamlessly integrate the advantages of multiple HI 
paradigms into VO research? Some studies like [66–68] combine 
learning-based feature representation with traditional 
optimization-based correction, forming hybrid strategies. Some 
others like [63] and [84] integrate AI paradigms into traditional VO 
systems for dynamic noise filtering. These examples reflect the 
coupling of multiple HI paradigms at the algorithmic/software level. 
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Studies like [78] present hardware-level fusion of different HI 
paradigms.

However, in current research, complementary integration of multi
ple HI paradigms at the software-hardware co-design level is rare. Can 
we achieve cross-paradigm fusion of different HI paradigms through this 
perspective to develop novel hybrid VO solutions? For example, how can 
we use SNNs to learn features from event cameras, and DL to learn 
features from standard frames? This approach allows us to replace the 
current observation-level fusion logic with representation-level fusion, 
and further integrate differentiable optimization methods into the 
hybrid network more seamlessly, forming a novel hybrid VO solution. 
However, this remains an open question requiring further exploration, 
without a conclusion on this matter.

Note. To facilitate quick access to the essential information of 
representative VO methods, this paper constructs Table 2. However, its 
compilation is challenging for the substantial variability in test bench
marks, hardware configurations, and evaluation metrics across studies, 
as well as the frequent omission of reports on comparative algorithm 
performance, computational efficiency, and hardware specifications. To 
address this issue, we have taken publication quality, citation metrics, 
timeliness, and reproducibility into consideration to provide a concise 
summary in Table 2, with metrics like accuracy, robustness, and 
efficiency.

3. LCD progress

In VSLAM, the LCD task is to identify previously visited locations to 
correct accumulated drift in VSLAM, typically by calculating scene 
similarity using VPR techniques [35]. This section reviews LCD progress, 
with corresponding discussion and analysis.

3.1. Traditional LCD

Common keyframe detection methods include the Bag-of-Words 
(BoW) model, geometric consistency verification, and spatial neigh
borhood constraint. The BoW model quantizes visual features (e.g., 
SIFT, ORB) into word frequency vectors for similarity matching [88]. 
Geometric consistency verification filters mismatches by analyzing 
feature points’ spatial distribution. For example, ORB-SLAM and 
FAB-MAP 2.0 [89] use Random Sample Consensus (RANSAC) to 
enhance keyframe detection accuracy despite its computational in
tensity. Spatial neighborhood constraint leverages camera motion con
tinuity and locality to filter keyframes, constructing a topological graph 
for efficient retrieval with spatial indexing structures like octrees for fast 
search [90]. Moreover, combining spatial constraints with 
appearance-based retrieval can enhance LCD robustness in large-scale 
environments, especially in repetitive structures, reducing mismatches 
[91].

After keyframe retrieval, rules are needed to measure scene simi
larity. Many methods assess the scene similarity using metrics like match 
count, spatial uniformity, and geometric consistency verification [35, 
36]. When scenes are vectorized, their similarities can be quantified 
using Euclidean distance, Hamming distance, and cosine similarity, etc. 
Notably, most RatSLAM-derived brain-inspired SLAM methods use vi
sual template matching to achieve LCD [13].

3.2. AI-enabled LCD

Essentially, LCD involves designing rules to evaluate the similarity 
between multiple scene description features to judge loop closure 
occurrence. AI-enabled methods can extract and match features auto
matically through representation learning, becoming valuable in LCD to 
mitigate the limitations of handcrafted features. Visual and semantic 
feature descriptions are commonly designed to describe scenes.

Some studies focus on using DL-designed feature descriptors to 

Table 2 
Summary of VO methods.

Category Methods Year Contributions

Traditional Feature- 
Based

ORB-SLAM 
[6]

2015 Using ORB features for high- 
precision pose estimation 
and mapping. Accuracy: 
> LSD-SLAM [46], ≈PTAM 
[87]; Robustness: low failure 
rate; Efficiency: 25–30 Frame 
Per Second (FPS) @ low-cost, 
business-grade CPU.

StructSLAM 
[42]

2015 Using architectural line 
features to reduce drift error 
in visual SLAM. Accuracy: 
> > MonoSLAM [43]; 
Robustness: stable under 
low-texture conditions; 
Efficiency: ~40 FPS @ 
common commercial-grade 
CPU.

Xu et al. 
[39]

2023 Using point-line flow feature 
for monocular Visual-Inertial 
SLAM. Accuracy: ≈ORB- 
SLAM3 [21]; Robustness: 
stable under low-texture 
conditions; Efficiency: ~17 
FPS @ common 
commercial-grade CPU.

Direct DTAM 
[45]

2011 A pioneering dense direct 
method that tracks and maps 
by aligning the entire image. 
Accuracy: ≈ PTAM [87]; 
Robustness: > PTAM under 
motion blur; Efficiency: 
depends on GPU.

LSD-SLAM 
[46]

2015 A representative semi-dense 
direct SLAM method. 
Accuracy: ~2.5 % Root Mean 
Square Error (RMSE) (KITTI); 
Robustness: stable to lighting 
changes; Efficiency: ~145 
FPS (pixel 154 ×46) @ 
relatively basic commercial 
GPU.

DSO 
[47]

2018 A sparse direct VO method 
estimating motion by 
minimizing sparse 
photometric errors. 
Accuracy: ~ORB-SLAM [6]; 
Robustness: >ORB-SLAM; 
Efficiency: ~55 FPS @ 
common commercial-grade 
CPU.

AI-Enabled Super- 
vised

DeepVO 
[54]

2017 Using a supervised CNN- 
LSTM network to predict VO 
trajectories. Accuracy: 
< ORB-SLAM [6] (KITTI); 
Robustness: stable under 
motion blur, lighting 
changes, low-texture; 
Efficiency: not report.

DytanVO 
[55]

2023 Using curriculum learning to 
optimize dynamic object 
segmentation and pose 
estimation. Accuracy: > >

DeepVO [54]; Robustness: 
stable under dynamic scenes; 
Efficiency: ~6 FPS @ 2 
high-end commercial-grade 
GPUs.

STDN-VO 
[57]

2025 Mimicking the human visual 
system’s dual-stream 
mechanism, extracting 
spatial and temporal features 
with different networks and 
fusing them to predict poses. 
Accuracy: > > DeepVO [54]

(continued on next page)
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Table 2 (continued )

Category Methods Year Contributions

and ORB-SLAM [6] (KITTI); 
Robustness: good 
generalization; Efficiency: 
~26 FPS @ high-end 
commercial-grade GPU.

Unsuper- 
vised

GANVO 
[56]

2019 Unsupervised monocular VO 
where discriminator 
enhances pose accuracy 
through optical flow 
consistency while generator 
produces depth maps. 
Accuracy: > ORB-SLAM [6]; 
Robustness: > ORB-SLAM in 
both complex and dynamic 
scenes; Efficiency: ~30 FPS 
@ computing power-rich 
commercially-grade GPU.

Zhou et al. 
[58]

2017 Pioneering unsupervised 
learning of depth and ego- 
motion from video. 
Accuracy: ≈ORB-SLAM [6]
(KITTI); Robustness: 
≈ORB-SLAM; Efficiency: not 
reported.

GeoNet 
[59]

2018 An unsupervised learning 
framework for jointly 
estimating dense depth, 
optical flow and camera 
pose. Accuracy: > [58] and 
ORB-SLAM [6]; Robustness: 
stable in occluded and 
texture-ambiguous regions; 
Efficiency: < 16 FPS @ 
relatively basic commercial 
GPU.

Kannapiran 
et al. [61]

2023 A self-supervised stereo VO 
using a GNN and positional 
constraints for robust feature 
matching. Accuracy: ~20 cm 
RMSE (synthetic dataset); 
Robustness: stable with scene 
and lighting changes; 
Efficiency: ~7 FPS @ 
common commercial-grade 
GPU.

D3VO 
[62]

2020 Using self-supervised 
learning to jointly estimate 
depth, pose, and uncertainty 
for a monocular VO. 
Accuracy: > > [58] and 
ORB-SLAM [6]; Robustness: 
stable with dynamic blur and 
lighting changes; Efficiency: 
not reported.

Hybrid DF-VO 
[67]

2020 Enforcing physical 
consistency between CNN- 
predicted depth and feature- 
based optical flow using 
differentiable BA. Accuracy: 
> [58] and ORB-SLAM2 
[20]; Robustness: stable 
under scale-drift mitigation, 
scale ambiguity resolution; 
Efficiency: not report.

Liu et al. 
[65]

2024 An adaptive learning 
framework for hybrid VO. 
Accuracy: > DF-VO [67]; 
Robustness: different 
disparity distributions; 
Efficiency: ~9 FPS @ 
dedicated workstation-grade 
GPU.

GraphAVO 
[68]

2024 Enhancing pose estimation 
by fusing pixel motion with 
graph-assisted optimization. 
Accuracy: > [58] and  

Table 2 (continued )

Category Methods Year Contributions

ORB-SLAM2 [20]; 
Robustness: stable under 
motion blur; Efficiency: 
~194 FPS @ relatively basic 
commercial GPU.

Event- 
Based

Event- 
Only

ESVO 
[74]

2021 An event-based stereo VO for 
3D reconstruction via 
spatiotemporal consistency 
optimization and 
probabilistic depth fusion. 
Accuracy: > ORB-SLAM2 
[20]; Robustness: stable in 
low light and HDR 
conditions; Efficiency: ~20 
FPS (DAVIS 346) @ common 
commercial-grade CPU.

EVIO 
[75]

2022 A monocular event-based VO 
using event-corner with 
sliding windows graph-based 
optimization. Accuracy: 
> ORB-SLAM3 [21]; 
Robustness: > ORB-SLAM3, 
stable in low-light and HDR 
conditions; Efficiency: ~40 
FPS (DAVIS346) @ 
computing power-rich 
commercially-grade CPU.

Wang et al. 
[76]

2023 Achieving event-based stereo 
VO with native temporal 
resolution via continuous- 
time Gaussian process 
regression. Accuracy: 
> ESVO [74]; Robustness: 
stable in complex motions 
and HDR conditions; 
Efficiency: not report.

Hybrid Hidalgo- 
Carrio et al. 
[77]

2022 Tracking a DAVIS240C event 
camera’s motion by 
combining events and 
grayscale frames, estimating 
motion by minimizing 
brightness increment error. 
Accuracy: >ESVO [74] and 
ORB-SLAM [6]; Robustness: 
stable under low frame rates 
with depth noise and contrast 
noise; Efficiency: not report.

RAMP-VO 
[78]

2024 Fusing event and image data 
using pixel-level 
asynchronous feature 
extraction and multi-scale 
fusion with differentiable BA. 
Accuracy:> DPVO [69], 
ORB-SLAM2 [20], 
ORB-SLAM3 [21]. 
Robustness: stable in 
low-light and HDR scenarios; 
Efficiency: the training relies 
on a dedicated 
workstation-grade GPU 
without time-cost reports.

Zhu et al. 
[79]

2023 Using adaptive time surface 
to select distinctive pixels 
and combines RGB-D with 
event data for improved pose 
estimation. Accuracy: 
>ESVO [74]; Robustness: 
reliable under complex 
dynamic motion conditions.; 
Efficiency: ~12 FPS (RGB-D 
& DVXplorer Lite) / ~80 FPS 
(RGB-D only) @ common 
commercial-grade CPU.

ESVO2 
[86]

2024 A direct event-based VO 
approach using a stereo event 
camera. Accuracy: >ESVO 

(continued on next page)
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enhance LCD [92]. Many others have developed specialized DL strate
gies for representation learning of local or global visual features to 
create effective scene descriptions for similarity estimation. For 
instance, NetVLAD [93], an upgrade of VLAD [94], uses a CNN to extract 
global image features and map images into compact vectors, improving 
scene recognition accuracy over traditional BoW models. Furthermore, 
without considering computational cost, some researchers use 
Visual-and-Language Model (VLM) to create scene description, such as 
[95]. It provides human-readable failure traceability and has inter
pretability and real-world application potential.

Recent DL-assisted visual LCD has focused on improving effective
ness, robustness, and real-time performance. Ma et al. [96] proposed a 
fast LCD method, combining an image-to-sequence candidate selection 
strategy and a feature matching algorithm with motion consistency 
constraints. Memon et al. [97] used VGG16 for feature extraction and 
moving object recognition, introducing a super dictionary combined 
with an AE for quick scene revisit determination. GOReloc [98] employs 
semantic topology graph matching and graph-kernel vector similarities 
to efficiently extract candidate subgraphs, surpassing ORB-SLAM2 in 
real-time performance. LoopNet [99] is an LCD method for dynamic 
settings, fusing feature maps and highlighting key landmarks through a 
multi-scale attention-based Siamese convolutional network. Zhou et al. 
[100] proposed a lightweight Siamese capsule network for LCD, 
employing depthwise separable and dilated convolutions with pruning 
layers to enhance real-time performance. AirLoop [10] is a lightweight 
lifelong LCD method, combining memory-aware synapses and relational 
knowledge distillation to adapt to new environments. VIPeR [101] im
proves AirLoop through adaptive mining, multi-stage memory, and 
probabilistic distillation, reducing catastrophic forgetting and boosting 
benchmark performance, thereby enhancing VPR in terms of adapt
ability and robustness. I2KEN [102] is also a lifelong LCD method, 
solving cross-domain adaptability and catastrophic forgetting via single- 
and cross-domain knowledge augmentation, and lifelong adaptive 
fusion.

Additionally, semantic descriptions are also effective for the LCD 
task and can be combined with visual feature methods. Semantic de
scriptions are primarily learning-based methods. For example, Singh 
et al. [103] designed a hierarchical semantic-geometric descriptor to 
fuse global scene categories and their geometric distribution, using se
mantic labels to filter out dynamic interference, enhancing LCD per
formance. Similarly, PlaceNet [104] extends LoopNet by learning to 
ignore dynamic objects to create landmark-focused semantic de
scriptions, robust to dynamic scenes and scale variations. AEGIS-Net 
[105] and CGiS-Net [106] construct global descriptors by fusing 
low-level color and geometric cues with high-level semantic features, 
showcasing superior robustness compared to appearance-only methods 
like NetVLAD. TextSLAM [107] models textual objects as texture-rich 
planar patches, using their semantic information as landmarks to 
match text semantics for keyframe detection, achieving robust LCD.

Semantic features, beyond forming scene descriptions, can pair with 
visual features to reduce matching uncertainty in LCD. SLC²-SLAM [108]
enhances LCD in NeRF SLAM for better reconstruction quality using 
latent codes as local features and aggregating them with semantic in
formation. Chen et al. [109] addressed instance-level inconsistencies to 
enhance LCD for dynamic scenes by integrating visual-semantic geo
metric verification. SemanticLoop [110] creates a 3D semantic graph via 

instance-level embedding and uncertainty detection, achieving robust 
LCD by geometric matching. SymbioLCD2 [111], building on Sym
bioLCD [112], combines semantic and visual features in a graph struc
ture, performing LCD with the Weisfeiler-Lehman kernel under temporal 
constraints.

3.3. Brain-inspired VPR

While LCD is strictly a subset of VPR applications, both aim to 
determine whether a particular scene has been visited. Therefore, this 
paper reviews brain-inspired VPR technologies to investigate progress 
beneficial to VSLAM’s implementation of LCD from the brain-inspired 
computing paradigm.

Fischer et al. [113] proposed an energy-efficient event camera-based 
VPR method that extracts sparse features and uses feature count dif
ferences for rapid localization. Ev-ReconNet [114], LoCS-Net [115] and 
VPRTempo [116] are all SNN-based VPR models. Ev-ReconNet pro
cesses event streams directly to improve accuracy in extreme lighting. 
LoCS-Net uses ANN2SNN conversion for fast VPR, enhancing real-time 
performance. VPRTempo uses temporal encoding linked to pixel in
tensity, trained with Spike-Timing-Dependent Plasticity (STDP) and a 
supervised delta learning rule, ensuring each output spike neuron re
sponds to a unique location. Hussaini et al. developed a series of 
SNN-based VPR methods, from regularized neuron allocation [16] to a 
modular region-specific ensemble system [17], and finally a modular 
architecture with geographical tiling and ensemble learning to enhance 
accuracy and generalization [18].

Some unique approaches also warrant attention. For example, Zhu 
et al. [117] developed a spatiotemporal memory algorithm inspired by 
insect mushroom body neural circuits, using neuromorphic computing 
to encode spikes and store visual sequence memories for real-time visual 
familiarity assessment in complex environments. Neubert et al. [15]
employed a Mini-Column Network (MCN) model inspired by the brain 
neocortex for VPR tasks, simulating sequence memory and cell predic
tive connections. They also reported combining MCN with a grid 
cell-inspired model to enhance VPR [118]. Ozdemir et al. [119] focused 
on Echo State Networks (ESNs) for capturing temporal relationships in 
data, combining ESNs with preprocessed CNNs for VPR tasks, surpassing 
some sequence matching models.

3.4. Periodic discussion

The essence of LCD is to design machine-computable rules for 
describing environments and assessing scene similarity. LCD and VPR 
technologies are largely similar, but LCD in VSLAM must consider 
computational timeliness.

Traditional LCD methods identify keyframes and perform feature 
matching for similarity comparison with historical scenes. While effec
tive in structured environments, these methods struggle with insuffi
cient robustness due to lighting changes, appearance variations, and 
viewing angle differences. They also face challenges related to heavy 
storage requirements for visual templates.

AI-enabled LCD methods automatically learn environmental de
scriptions through representation learning, assessing scene similarity 
with higher accuracy and robustness within computational timeliness 
constraints. The roles of AI in LCD and VO are somewhat similar, both 
involving the extraction and description of scene features, followed by 
application-specific utilization. Thus, to a large extent, the previous 
analysis of the strengths and weaknesses of AI-enabled VO methods in 
Section II is largely applicable to AI-enabled LCD paradigms. However, 
while VO tasks focus on the offset representation of scene features, LCD 
focuses on their similarity. In VO, sparse semantic features are rarely 
used for pose estimation and mostly serve as an auxiliary in geometric 
constraints and dynamic noise filtering. In LCD, however, semantic 
features are often used to enhance scene descriptions or mitigate the 
negative impact of distracting backgrounds and dynamic objects.

Table 2 (continued )

Category Methods Year Contributions

[74]; Robustness: stable in 
low light, and HDR scenes; 
Efficiency: mapping 
efficiency increased by 5x 
compared to ESVO @ 
computing power-rich 
commercially-grade CPU.
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Brain-inspired VPR methods have introduced new sensor types (e.g., 
event cameras) and shifted computing paradigms. For instance, 
appearance/feature-based solutions using SNN and ESN have brought 
new changes to VSLAM’s LCD [116,119]. Notably, some studies have 
explored novel mechanisms inspired by animal and insect brains neural 
mechanisms, offering new insights for VPR [117,118]. These emerging 
methods show benefits in computational efficiency, interpretability, and 
adaptability to neuromorphic deployment, yet further exploration and 
improvement are still needed in terms of models’ training effectiveness 
and accuracy.

The preceding contents examine LCD advancements through the lens 
of individual HI paradigms. From this foundation, we pinpoint several 
open challenges. Besides AI generalization, this paper then delves into 
these challenges, through the lens of HI integration. It is worth noting 
that, as analyzed above, AI applications in VO and LCD tasks share many 
commonalities in their underlying logic. Thus, while the perspective on 
the following open challenges is similar to that in Section II, there are 
differences, and some insights may be mutually beneficial. 

1. How to ensure generalization of AI-enabled LCD algorithms? As 
discussed in Section II, expanding the scale of high-quality training 
data clearly benefits AI-enabled solutions. However, this is chal
lenging, especially for numerous public benchmarks that are already 
established and unchangeable. 

Therefore, the previous discussions in Section II about using life
long learning, few-shot/zero-shot learning, and meta-learning to 
enhance the generalization and usability of AI-enabled LCD methods 
are equally applicable here.

2. How can we balance computational efficiency and performance? The 
insights here differ from those in the VO section. Since training an 
SNN with complex network structure is difficult, there is almost no 
research on using SNNs for continuous dynamic pose estimation in 
VO from complex traditional image data. However, for static scene 
description tasks, brain-inspired VPR methods, particularly SNN- 
based solutions, can be effective. They may have huge advantages 
in efficiency and power consumption on neuromorphic hardware.

Moreover, SNN-based semantic recognition solutions have demon
strated reliable performance [85,120]. However, they still fall short of 
DL in descriptor representation for complex visual environments. 
Therefore, we suggest introducing brain-inspired paradigms to facilitate 
neuromorphic acceleration into pure appearance-based visual feature 
description methods (traditional or AI-enabled) to build visual-semantic 
feature descriptors, which is a worthwhile approach.

3. How can we seamlessly integrate the advantages of multiple HI 
paradigms into LCD research? Like VO, most existing LCD progress has 
only preliminarily integrated multiple HI paradigms at either the algo
rithmic level or the hardware level. For example, combining cross-modal 
data from traditional and event cameras shows benefits in overcoming 
single-modal limitations, enabling more diverse and reliable environ
mental description rules [117]. Given the natural compatibility of SNNs 
with event camera data and the common use of CNNs for traditional 
images, relevant advances have been made in hybrid VPR like [119]. 
Moreover, the brain’s neural mechanisms are valuable to inspire novel 
VPR ideas [118], potentially shifting VSLAM’s LCD from feature-based 
to episodic memory-based approaches.

Nevertheless, in the existing VPR works, it is rare to find a study like 
NeuroGPR [121] that integrates multiple HI paradigms through 
software-hardware co-design. Thus, future research may explore Neu
roGPR as a foundation for capability enhancement or practical appli
cation, such as integrating it as an LCD module within VSLAM systems. 
By the way, no similar breakthrough has been seen in the VO field. It 
may have reference value for the VO progress.

Note. Table 3 offers rapid access to the essential information of 
representative LCD progress. Given the huge variances in test bench
marks, evaluation metrics, and hardware configurations across different 

Table 3 
Summary of LCD/VPR methods (A, B, and C correspond to the properties of 
summarized methods, representing Traditional, AI-enabled, and Brain-inspired 
method types, respectively.).

A B C Methods Year Contributions

Appearance 
-Only

√ ​ ​ Bow 
[88]

2003 Quantizing visual 
features (e.g., SIFT, 
ORB) into word 
vectors. Precision & 
Robustness: depends 
on scenes; Efficiency: 
depends on CPU.

√ ​ ​ FAB-MAP 2.0 
[89]

2009 Using RANSAC to 
enhance robustness 
and improve LCD 
accuracy. Precision & 
Robustness: depends 
on scenes; Efficiency: 
depends on CPU.

√ ​ ​ RatSLAM 
[13]

2013 Using a local view cell 
module to store and 
match visual templates 
for LCD. Precision & 
Robustness: depends 
on parameter 
configuration; 
Efficiency: depends on 
parameter 
configuration.

√ ​ ​ NeuroSLAM 
[14]

2019 Performing LCD as 
well as RatSLAM. 
Accuracy, robustness, 
and efficiency are all 
on par with RatSLAM 
[13].

​ √ ​ NetVLAD 
[93]

2016 Using a CNN to extract 
global features and 
map images into 
compact vectors. 
Precision: ~74 % 
(average) Recall@1 
(multiple datasets 
from [99]); 
Robustness: stable to 
illumination and 
viewpoint changes, 
and occlusion; 
Efficiency: depends on 
GPU.

​ √ ​ Ma et al. 
[96]

2022 Using a convolutional 
AE and motion 
consensus with a super 
dictionary. Precision: 
> 80 % @ maximum 
recall (KITTI); 
Robustness: stable in 
complex 
environments; 
Efficiency: ~105ms 
per inference @ an 
entry-level-priced 
GPU.

​ √ ​ LoopNet 
[99]

2022 A multi-scale 
attention-based 
Siamese convolutional 
network for LCD. 
Precision: > NetVLAD 
[93]; Robustness: 
stable to scene, 
viewpoint, and 
illumination 
variations; Efficiency: 
2x faster than 
NetVLAD.

​ √ ​ AirLoop 
[10]

2022 A lightweight lifelong 
learning LCD method. 
Precision: ~92 % 

(continued on next page)
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Table 3 (continued )

A B C Methods Year Contributions

Recall@1 (Nordland); 
Robustness: stable to 
appearance changes; 
Efficiency: 97–290ms 
per inference 
(hardware 
configuration 
undisclosed).

​ ​ √ Fischer et al. 
[113]

2022 Event camera-based 
VPR that extracts 
features with 
significant changes 
and uses feature count 
differences for rapid 
VPR. Precision: ~64 % 
Recall@1 (self- 
collected dataset); 
Robustness: robust to 
moderate speed 
variations; Efficiency: 
~1ms per inference 
(DAVIS346) @ a high- 
end commercial CPU.

​ ​ √ VPRTempo 
[116]

2024 Employing temporal 
encoding linked to 
pixel intensity, trained 
via STDP and a 
supervised delta 
learning rule. 
Precision: ~56 % 
Recall@1 (Nordland), 
> NetVLAD [93]; 
Robustness: stable to 
seasonal/lighting 
changes; Efficiency: 
> 50 Hz @ a common 
commercial-grade 
CPU.

​ ​ √ Hussaini et al. 
[16]

2022 A regularized 
weighted neuron 
allocation scheme for 
SNN-based VPR. 
Precision: 47.5 % 
Recall@1 (Nordland), 
> NetVLAD [93]; 
Robustness: stable 
under 
lighting/seasonal 
changes; Efficiency: 
~0.2 s per inference 
(~81 watts) @ a GPU 
(configuration 
undisclosed).

​ ​ √ Hussaini et al. 
[17]

2023 A modular, region- 
specific SNN ensemble 
system for VPR. 
Precision: ~52.6 % 
Recall@1 (Nordland), 
> NetVLAD [93] & 
[16]; Robustness: 
stable to 
seasonal/lighting 
changes; Efficiency: 
not report.

​ ​ √ Hussaini et al. 
[18]

2025 A SNN-based VPR 
architecture 
integrating a 
geographical tiling 
mechanism and 
ensemble learning. 
Precision: > [16]; 
Robustness: stable to 
seasonal/lighting 
changes; Efficiency: 
1–2 s per inference @ a  

Table 3 (continued )

A B C Methods Year Contributions

high-end commercial 
CPU.

​ ​ √ Neubert et al. 
[15]

2019 Employing MCN 
inspired by the human 
neocortex for VPR. 
Precision: > 70 % @ 
average precision 
(Nordland); 
Robustness: stable to 
lighting/seasonal 
changes; Efficiency: 
~2.1 s per inference @ 
a common 
commercial-grade 
CPU.

​ ​ √ Ozdemir et al. 
[119]

2022 Combining ESNs with 
preprocessed CNNs for 
VPR. Accuracy: > >

NetVLAD [93]; 
Robustness: depends 
on the parameter 
configuration; 
Efficiency: not report.

​ √ √ NeuroGPR 
[121]

2023 Integrating both 
neuromorphic and 
traditional cameras 
and combining AI- 
enabled and brain- 
inspired hybrid 
computing paradigms. 
Precision: relevant to 
different 
environments.; 
Robustness: robust to 
environmental 
uncertainties like 
appearance ambiguity 
and lighting changes; 
Efficiency: 10.5x lower 
latency & 43.6 % 
lower power 
consumption than 
Jetson Xavier NX @ 
Tianjic.

Semantic- 
Assisted

​ √ ​ TextSLAM 
[107]

2024 Modeling textual 
objects as texture-rich 
landmarks, using text 
semantic matching to 
detect keyframes and 
search for point-level 
correspondences. 
Precision: >ORB- 
SLAM and NetVLAD 
[93]; Robustness: 
> NetVLAD, stable to 
motion blur, 
illumination changes; 
Efficiency: > NetVLAD 
@ entry-level-priced 
CPU.

​ √ ​ SemanticLoop 
[110]

2023 Constructing a 3D 
semantic graph via 
instance-level 
embedding and 
uncertainty detection 
with geometric graph 
matching. Precision: 
> 90 %@recall 
(TUM); Robustness: 
stable against 
appearance changes 
and complex scenes; 
Efficiency: < 0.4 ms 
per matching @ entry- 
level-priced CPU.

(continued on next page)
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works, as well as the frequent omission of key comparable metrics, we 
have adopted the same principles used for compiling Table 2 to prepare 
Table 3.

4. Backend optimization progress

In VSLAM, backend optimization integrates the frontend’s local 
perception cues to prevent mapping failures from accumulated errors. 
Traditional methods model it as state estimation or nonlinear optimi
zation. In contrast, brain-inspired SLAM methods simulate navigational 
cells and path integration via brain-inspired models [122], building a 
spatial experience map by integrating local cues continuously.

4.1. Traditional backend optimization

Traditional backend optimization methods are divided into filtering 
and optimization methods. Filtering methods, based on Bayesian theory, 
process data in real time through iterative prediction and updates. They 
are suitable for dynamic environments but face high computational 
complexity and limitations of the Markov assumption [38]. EKF-SLAM 
[123] is an early filter-based solution. In contrast, optimization methods 
reformulate SLAM as a Nonlinear Least Squares (NLS) problem, using all 
historical data to achieve high accuracy.

Despite their computational demands, optimization methods have 
become mainstream, supported by advances in hardware and optimi
zation theory. Among them, BA is the most classic technique. It typically 
uses Gauss-Newton or Levenberg-Marquardt methods to solve the NLS 
problem. PTAM [87] separates tracking and mapping into parallel 
threads, optimizing recent keyframes via local BA. The ORB-SLAM se
ries, based on PTAM, is a prime example. LSD-SLAM [46] maintains 
consistency in large-scale settings by combining semi-dense direct 
methods with BA. DS-SLAM [11] and RTAB-Map [124] integrate se
mantic information and memory management strategies in dynamic and 
large-scale settings, respectively, reducing VO drift and updating the 
map via BA.

Beyond BA, graph optimization models SLAM problems as a graph 
structure, with nodes as poses or landmarks and edges as constraints. 

Currently, general-purpose graph optimization frameworks like g2o and 
GTSAM have significantly advanced SLAM standardization and appli
cation. In addition, the recently reported PyPose [125] has also been 
proven to support the backend optimization of SLAM with high effi
ciency. These frameworks provide flexible graph structure definitions 
and efficient interfaces, lowering SLAM development barriers.

Moreover, pose graph optimization, often applied in global optimi
zation, employs camera poses as nodes and relative measurements as 
edges, reducing computational load compared to global BA. For 
example, LDSO [126] uses a pose graph to correct errors post-loop 
closure by optimizing only camera poses. RGB-D SLAM [127] in
tegrates RGB features and depth into a pose graph to minimize optimi
zation variables. In addition, factor graph optimization models SLAM as 
a bipartite graph, decomposing the joint probability distribution into 
factors. Its modularity aids integration of multi-sensor data and prior 
knowledge. Representative cases like iSAM [128], iSAM2 [129], and 
their improved versions [130–132] support incremental optimization, 
efficiently processing new observations without re-optimizing the entire 
graph.

4.2. Brain-inspired backend path integration

Unlike traditional ideas, the goal of brain-inspired SLAM is to 
replicate the brain’s ability to encode spatial experience, integrate local 
environmental cues from the SLAM frontend, and use stored spatial 
memories (visual templates) to suppress cumulative error drift during 
long-term mapping [13,133,134]. Brain-inspired SLAM methods receive 
self-motion cues from sensors (e.g., VO, Sonar, Lidar), use CANNs to 
simulate the brain’s spatial cue encoding and path integration, and 
obtain spatial representations by decoding neural activity patterns. LCD 
is performed via visual template matching, mimicking the brain’s 
mechanism of correcting path integration errors with similar spatial 
memories [122]. These commonalities transform traditional backend 
optimization into a problem of optimal spatial experience encoding and 
decoding.

Taking RatSLAM as an example, it used a CANN-based pose cell 
network, inspired by hippocampal place cells, to encode path integra
tion by extracting self-motion cues from VO, with visual template 
matching for LCD. The spatial experience was subsequently decoded to 
construct an experience map [135]. Afterwards, as neuroscience 
advanced, grid cell mechanisms in the entorhinal cortex were elucidated 
and integrated into algorithms like NeuroBayesSLAM [133]. Zeng et al. 
[136], inspired by the entorhinal cortex’s joint encoding mechanism, 
proposed a combined encoding CANN model of grid cells and 
head-direction cells to replace RatSLAM’s pose cell network. Further
more, they simplified CANN’s neurodynamics using a Bayesian proba
bilistic framework, creating the more efficient NeuroBayesSLAM.

Currently, research is increasingly focusing on 3D navigation cells. 
DolphinSLAM [137] integrates RatSLAM and FABMap, using a 
CANN-based 3D place cell network to build experience maps for un
derwater scenes. Yu proposed NeuroSLAM [14]. It constructs a joint 
pose cell model using 3D grid cells and multilayer head-direction cells, 
replacing RatSLAM’s pose cell network to achieve 3D path integration 
and build multilayer experience maps. Thereafter, Shen et al. [138]
proposed ORB-NeuroSLAM, incorporating ORB features to improve 
NeuroSLAM’s LCD and enhance experience map accuracy.

4.3. Periodic discussion

In backend optimization, both traditional and brain-inspired path
ways, despite differing principles and computing paradigms, share the 
same goal of effectively integrating the frontend’s local cues to reduce 
accumulated errors and avoid mapping failure.

Traditional methods, rooted in early probabilistic computation, have 
evolved from filtering methods to optimization approaches. These 
methods, now mature after decades of development, still face challenges 

Table 3 (continued )

A B C Methods Year Contributions

​ √ ​ SymbioLCD2 
[111]

2022 Constructing a graph 
structure to fusion 
semantic and visual 
features with temporal 
constraints. Precision: 
> 93 %@recall 
(TUM), > ORB-SLAM2 
[20]; Robustness: 
robust to dynamic 
disturbances; 
Efficiency: not report.

​ √ ​ PlaceNet 
[104]

2023 Expending LoopNet, 
generates robust 
feature 
representations 
through multi-scale 
feature learning and 
semantic fusion. 
Precision: > 95 % 
@recall (multiple 
benchmarks); 
Robustness: stable 
against dynamic 
scenes, illumination 
changes, and 
viewpoint variations; 
Efficiency: > NetVLAD 
[93], ~5ms per 
matching @ relatively 
basic commercial GPU.
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in computational efficiency on edge devices. Co-design of software and 
hardware to enhance computational efficiency is a promising solution 
[139,140].

Brain-inspired SLAM converts backend optimization into optimal 
spatial experience encoding and decoding, supported by spatial mem
ory. It simulates the brain’s path integration using brain-inspired models 
and memory matching for LCD to correct experience maps. However, it 
currently has lower mapping accuracy and limited ability to describe 
complex environments compared to traditional methods, restricting its 
practical applications. Research on navigation neural circuits is still in 
its early stages, with limited understanding, making it challenging to 
fully replicate the powerful path integration capabilities of animal 
brains.

Therefore, research on navigation neural mechanisms and the 
collaborative mechanisms of heterogeneous navigation cells is essential 
for advancing brain-inspired SLAM studies. To address the low compu
tational efficiency of CANN models, some researchers have improved 
efficiency using a Bayesian framework [133], while others have accel
erated CANNs by converting them to SNNs, utilizing neuromorphic 
computing solutions [141,142].

Moreover, given that brain-inspired SLAM reconstructs the under
lying logic of traditional backend optimization, the two seem to be in 
competition in terms of global optimization in the backend. However, 
notably, the ORB-NeuroSLAM [138] system attempts to introduce local 
BA optimization in the frontend VO based on ORB features, which does 
not conflict with the brain-inspired path integration in the backend.

5. Mapping progress

In VSLAM, backend mapping’s function design depends on frontend 
processing and application requirements, not a fixed algorithmic 
framework. Thus, VSLAM/s mapping methods range from sparse to 
dense and from geometric to semantic, constrained by frontend feature 
extraction. This paper categorizes backend mapping into geometric, 
semantic, and generalized mapping based on different scene 
representation.

5.1. Geometric mapping

Geometric mapping focuses on scene shape and structure, including 
depth information, mesh representation, and topological representation. 
Depth information, obtained from stereo vision, depth cameras, or DL 
methods, can reflect the scene’s geometric structure. For example, CNN- 
SLAM [143] uses a CNN to predict per-pixel depth and integrates it into 
the VSLAM system for dense reconstruction.

Mesh representation constructs a mesh map by estimating the height 
or depth of each mesh cell and is widely used in navigation and path 
planning. For example, Gmapping [144] builds high-precision 2D oc
cupancy grid maps widely adopted by Robot Operating System (ROS) for 
indoor navigation. Adding height information to a 2D grid creates an 
elevation map (2.5D map) suitable for uneven terrain navigation.

Voxel maps divide 3D space into regular grids (voxels) to record 
occupancy status for 3D environmental modeling. SpOctA [145] im
proves 3D voxel map construction efficiency using octree encoding. 
Topological representation focuses on the environment’s topological 
structure and is used by most brain-inspired SLAM systems to build 
experience maps due to CANN’s decoding characteristics. RatSLAM 
creates a 2D topological experience map [135], later extended to 2.5D 
by Milford et al. [146] and to 3D by NeuroSLAM.

5.2. Semantic mapping

Semantic mapping aims to construct maps with geometric and se
mantic information, focusing on semantic extraction and mapping 
[147]. Common semantic extraction methods in VSLAM include object 
detection and semantic segmentation using techniques like SSD, YOLO 

series, and other learning-based approaches.
For instance, DS-SLAM [11] removes dynamic objects using SegNet 

and motion consistency checks, reducing localization errors in dynamic 
environments and aiding dense semantic octree map construction. 
DynaSLAM [148] performs initial semantic segmentation with a Mask 
R-CNN based on ORB-SLAM2 and tracks unsegmented dynamic objects 
by minimizing photometric reprojection errors. Detect-SLAM [149] and 
Dynamic-SLAM [150] improve SSD detectors for specific tasks, with 
similar works including YOLO-SLAM [151] and CubeSLAM [152].

In fact, VSLAM technology can be combined with many advanced 
object detection and semantic segmentation methods beyond the com
mon solutions. For example, Blitz-SLAM [153] uses BlitzNet (based on 
ResNet-50) for object detection and semantic segmentation. Reviews of 
object detection and semantic segmentation research over the past 20 
years are in [154–156]. Latest methods based on GNN, SNN, etc., can be 
found in [157–167] and are expected to positively impact semantic 
mapping.

Semantic mapping integrates semantic data (e.g., object categories 
and locations) with scene geometry to enhance map interpretability 
[168]. For instance, SemanticFusion [169] fuses multi-view CNN se
mantic predictions using SLAM-derived correspondences and probabi
listic methods, producing accurate and real-time 3D semantic maps. 
TextSLAM [107] embeds geometric parameters and semantic content 
(text strings) of textual objects into a 3D map synchronously. Quad
ricSLAM [170] represents objects with quadratic surfaces, integrating 
geometric constraints and semantic information for a flexible and 
compact representation. More related progress can be found in [147, 
171,172].

5.3. Generalized mapping

Generalized mapping utilizes implicit scene representations via DL to 
encode scenes compactly for reconstruction or pose estimation. For 
instance, CodeSLAM [173] employs a deep AE to convert images into an 
optimization-friendly format, enhancing VSLAM efficiency and accuracy 
in camera pose tracking and scene reconstruction.

Recently, NeRF has advanced 3D scene representation, enabling 
implicit mapping in VSLAM. iNeRF [174] first applied NeRF for pose 
estimation through re-localization using a pre-trained model. iMAP 
[175] then integrated NeRF into VSLAM for joint optimization of the 
embedded scene map. NICE-SLAM [176] expanded this by using hier
archical and neural implicit representations to model larger scenes. 
SLC²-SLAM [108] used semantic-guided LCD tailored for NeRF SLAM 
with graph optimization and BA, delivering superior reconstruction 
quality, especially in large-scale scenes. Vox-Fusion [177] combines the 
sparse-voxel octree with neural implicit representations, yielding a 
memory-efficient, dynamically extensible, real-time dense SLAM 
framework.

Additionally, recent advances like mixed spiking NeRF [178], event 
camera-based E-NeRF [179] and E2NeRF [180], which integrates an 
event camera with a standard RGB camera, offer efficient SNN-based 
NeRF solutions that may boost neuromorphic VSLAM development. 
However, NeRF-assisted generalized mapping faces challenges such as 
over-smoothing and catastrophic forgetting, despite strengths in feature 
mapping, tracking, and novel view synthesis.

Moreover, 3D GS have attracted attention for their efficient 
rendering, explicit representation, and robust optimization. GS-SLAM 
[181] combines 3D Gaussians with splat rendering, encapsulating scene 
geometry and appearance using 3D Gaussians, opacity, and spherical 
harmonics. This approach significantly enhances rendering speed and 
map optimization efficiency compared to NeRF-based methods. 
Photo-SLAM [182], SplaTAM [183], and GS-SLAM all model scenes with 
3D GS, representing each point as a Gaussian distribution with direction, 
elongation, color, and opacity.

Not only that, event-driven 3D GS progress based on event cameras is 
increasing. For example, EOGS [184] optimizes rendering using 
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brightness changes from an event camera with an event brightness loss 
function, enabling high-quality 3D GS reconstruction under motion blur 
and low-light conditions. Ev-GS [185] infers 3D GS from monocular 
event camera data, excelling in reducing blurring, improving visual 
quality, and offering computational and memory efficiency. E2GS [186]
integrates event camera data with GS, using both blurry images and 
event data to enhance image deblurring and novel view synthesis quality 
while achieving faster training and rendering speeds. These methods 
offer efficient rendering, explicit representation, and rich optimization 
capabilities, while utilizing submaps to prevent catastrophic forgetting 
and maintain computational efficiency.

5.4. Periodic discussion

Backend mapping is determined by frontend processing and appli
cation needs. The frontend dictates input data quality and type, while 
the application defines the map’s functionality and form. For instance, 
when the frontend uses feature-based methods, VSLAM systems typi
cally construct sparse maps (e.g., PTAM [87], ORB-SLAM). Direct 
methods can produce sparse, semi-dense (e.g., DSO [47]), or dense maps 
(e.g., DTAM [45]). Semi-direct methods, like semi-direct multimap 
SLAM [187], can combine both approaches for robust real-time recon
struction in dynamic scenes. Brain-inspired SLAMs (e.g., RatSLAM, 
NeuroSLAM) create geometric topological maps via CANNs for spatial 
experience encoding and decoding.

This paper classifies backend mapping strategies into three cate
gories. Geometric mapping focuses on depth information, mesh repre
sentation, and topological structure. Semantic mapping integrates object 
detection and semantic segmentation methods to enrich environment 
representations through semantic extraction and mapping. Generalized 
mapping transitions to implicit representations and neural rendering, 
enabling lightweight storage and enhanced expressiveness. State-of-the- 
art techniques like NeRF and 3D GS redefine mapping paradigms [32].

From an algorithmic perspective, brain-inspired SLAM excels at 
capturing environmental topology, while AI-enabled SLAM is proficient 
at extracting semantic information. Humans can simultaneously encode 
both topological and semantic information into abstract the cognitive 
map during exploration. Therefore, it is not difficult to envision that 
integrating AI-based semantic understanding with brain-inspired topo
logical descriptions could emulate human spatial cognition, driving the 
development of cognition-driven VSLAM for robust, large-scale VSLAM 
systems. However, how to adapt the current VSLAM framework to 
incorporate neural implicit map representations, especially event-driven 
approaches like [180,186], etc., requires further investigation.

6. Hardware support for VSLAM systems

Hardware enables the practical application of intelligence. Tradi
tional visual sensors face challenges like motion blur and light sensi
tivity, despite improvements in resolution, sensitivity, and dynamic 
range. Event cameras and bio-inspired visual sensors address these is
sues by providing novel visual perception capabilities for VSLAM sys
tems. Hardware computational power remains a critical limiting factor 
for intelligence, especially in AI, as evidenced by the 20-year dormancy 
of DL due to computational constraints.

Moreover, the evolution of backend optimization pathway in SLAM 
also highlights the significant impact of hardware computing power on 
system-level SLAM development. From a system-level perspective, 
beyond algorithms, it is essential to summarize the heterogeneous visual 
sensors and computing hardware that benefit VSLAM technology in the 
era of HI coexistence. This will facilitate more researchers in generating 
innovative ideas.

6.1. Visual sensors

Traditional visual sensors like monocular and stereo cameras 

estimate depth using multi-view geometric constraints but are limited 
by feature matching accuracy and adaptability to dynamic environ
ments. RGB-D cameras, which directly capture depth via structured light 
or time-of-flight technology, perform well in low-texture scenes. ORB- 
SLAM2 is a prime example that supports monocular, stereo, and RGB- 
D cameras. Panoramic cameras, which use multi-lens stitching or fish
eye lenses to expand the field of view, enhance global scene under
standing and have been demonstrated in NeuroSLAM [14]. Moreover, 
multi-camera setups are employed in VSLAM systems like BE-SLAM 
[188] and BEV-SLAM [189].

Bionic cameras, modeled after insects’ optic flow navigation mech
anism, offers a wider field of view, stronger moving object detection, 
and higher light sensitivity. Despite limited research focus, recent 
progress demonstrates significant advantages in enhancing VSLAM 
performance in low-texture environments. Specifically, Liu et al. [23, 
190] developed a VSLAM system with a bionic eye that actively searches 
for texture, thereby improving system robustness. For research progress 
on bio-inspired visual sensors, refer to [191].

Event cameras, inspired by primate retinal structures. The Dynamic 
Vision Sensor (DVS) series, Asynchronous Time-based Image Sensor 
(ATIS) series, Dynamic and Active-pixel Vision Sensor (DAVIS) series, 
mimic the peripheral retinal structure by detecting brightness changes 
and outputting event streams [34]. Moreover, exemplified by Vidar 
[192] developed by Huang’s team, uses foveal photoreceptors and 
proposes an integrative visual sampling model. Beyond them, SCAMP-5 
[193] is a novel event camera that integrates sensing and computing by 
processing optical signals on-chip and synchronously parallelizing all 
pixels within the same clock cycle, unlike DVS’s asynchronous output. 
Benefit from event-based DVS, Kreiser et al. [141] promoted the 
development of neuromorphic SLAM. Research on event -based VPR 
benefits LCD [117,194]. In addition, NeuroGPR [121] integrates both 
RGB-D and DAVIS346 cameras for place recognition.

6.2. Chips and processors

In non-mobile environments, high-performance CPU/GPU worksta
tions support intensive AI processing but are unsuitable for edge appli
cations in unmanned systems due to latency and energy constraints. This 
has driven advancements in dedicated AI processors for mobile devices 
[195]. Low-cost edge devices like Raspberry Pi and Orange Pi are used 
for prototyping but lack power for complex VSLAM tasks [196]. 
Moderate-capability edge AI modules, like NVIDIA’s Jetson TX2 and 
Rockchip’s RK3588, are suitable for moderately complex VSLAM tasks. 
Dedicated AI-accelerated devices, including edge GPUs (e.g., NVIDIA’s 
Jetson NX and Orin series), Google’s Coral TPU, and Cambricon’s NPU, 
enhance energy efficiency. Jetson-SLAM [140] achieves over 60 FPS on 
Jetson NX and exceeds 200 FPS on desktop GPUs. Hybrid AI computing 
boxes can integrate multi-core CPUs, GPUs, and NPUs for real-time 
mapping and localization [197]. Other notable processors include Ho
rizon Robotics’ Brain Processing Units (BPUs) [198] and Graphcore’s 
Intelligent Processing Units (IPUs) [199], etc.

Despite advances in AI-specific accelerators, von Neumann 
architecture-based computing units face diminishing returns from 
Moore’s Law. Amid the era of HI co-development, neuromorphic 
computing has emerged as a solution. Successful achievements include 
the Neurogrid [200] and Braindrop [201], the BrainScaleS series [202], 
the SpiNNaker series [28,203], SynSense’s DYNAPs [204], Dynap-SEL 
[205] and Dynap-SE2 [206], Intel’s Loihi series [207,208], International 
Business Machines (IBM)’s TrueNorth [209], China’s Darwin series 
[210,211], and Tianjic series chips [2,27], ect. Yoon et al. [142]
demonstrated a 65-nanometer NeuroSLAM accelerator IC based on 
neuromorphic computing, achieving ultra-low-power VSLAM function
ality via mixed-signal oscillators. Theoretically, ANN2SNN technology 
can theoretically convert DL solutions into SNNs, facilitating 
ultra-low-power SLAM through neuromorphic computing. However, 
this requires a system-level coordinated solution.
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Additionally, quantum intelligence has introduced new hardware 
computing solutions in the era of HI coexistence, such as IBM’s Flamingo 
processor, Google’s Willow chip, and PsiQuantum’s Omega chip 
[212–215]. However, quantum computing chips and sensors have not 
yet been applied in SLAM and thus are not detailed here. They may 
potentially benefit the system-level development of VSLAM in the 
future.

6.3. Periodic discussion

In the era of HI coexistence, manifestations of intelligence are 
diverse, including heterogeneous sensors, computing methods, and 
processors. They offer opportunities for next-generation VSLAM tech
nologies and systems. As previously noted, hardware support, including 
sensors and chips, embodies intelligence to meet practical application 
needs. Compared to traditional visual sensors, bio-inspired visual sen
sors and event cameras have equipped VSLAM systems with new 
perception capabilities in the era of HI coexistence. At present, a VSLAM 
system can even integrate multi-cameras, taking BEV-SLAM [189] as an 
example.

Today, AI continues to innovate with increasingly mature AI-specific 
processors. However, constraints from the von Neumann architecture 
limit further progress in optimizing power consumption and improving 
computational efficiency. In contrast, brain-inspired intelligence, with 
substantial global investment, holds broad future prospects [216]. 
Despite incomplete understanding of the brain’s architecture, research 
findings have inspired advanced neuromorphic chips like Intel’s Loihi2, 
leading to the world’s largest neuromorphic computing system, Hala 
Point [217]. It is designed to support advanced research in 
brain-inspired intelligence and address efficiency and sustainability 
challenges in current AI. This paper does not address quantum 
computing in-depth due to the lack of mature and practical quantum 
chips. Table 4 shows comparison of current neuromorphic chips.

7. Framework, challenges and opportunities

This section delineates the challenges and opportunities confronting 
VSLAM in the era of HI coexistence and proposes a systematic frame
work to catalyze the emerging trend of cross-paradigm HI integration for 
future community-wide innovation.

7.1. System-level development framework

Currently, multiple HI paradigms are at varying stages of develop
ment, playing diverse roles in VSLAM research. For example, mathe
matical computing-based VSLAM has developed over three decades with 
low costs and good scalability but struggles in complex environments 

due to reliance on human-designed rules. AI-enabled VSLAM, driven by 
data and representation learning, has improved accuracy by overcoming 
limitations of traditional computational rules designed by human 
experience, but it faces high-complexity computation and weak gener
alization. AI-specific chips enable some real-time solutions but their 
high costs are impractical for low-cost robots. Brain-inspired VSLAM can 
theoretically excel in computational efficiency and optimize power 
consumption on neuromorphic hardware, but it trails traditional 
methods in accuracy and faces high costs.

Each of these HI paradigms has strengths and weaknesses at the 
software and hardware levels. Therefore, formulating mutually benefi
cial fusion schemes is pivotal for promoting the practical application of 
HI integration in the future VSLAM research. Given this, this paper 
proposes a VSLAM framework from the perspective of multiple HI 
integration (Fig. 2). This framework divides the development of a 
VSLAM system into the input end, algorithm end, and deployment end. 
It can also serve as a template to expand the input end and guide the 
system-level development of general SLAM systems.

The input end includes heterogeneous visual sensors, from which the 
VSLAM system selects one or more categories to support the algorithm 
end. The algorithm end makes up with the computational layer (het
erogeneous computing methods) and the functional layer (VSLAM 
functions like VO, LCD, backend optimization and mapping). During 
development, suitable computing paradigms in the computational layer 
are selected based on input data characteristics to meet the functional 
layer’s requirements. The functional layer can leverage hybrid 
computing paradigms if key technologies are coordinated to support full 
VSLAM functionality. Taking semi-bionic SLAM [218], it employed 
feature-based VO and a AlexNet for LCD, with CANN-based head-
direction and place cell network to construct experience map. Liu, et al. 
[219] combined Yolov3 with RatSLAM to create a semantic-embedded 
topological experience map.

Additionally, the deployment end can use hybrid processors as 
needed. Some hybrid AI computing boxes have been designed to 
improve efficiency with joint AI computing power. The Tianjic chip and 
SpiNNaker2 both support the integration of AI and brain-inspired 
models. NeuroGPR [121] is a Tianjic-empowered example, using 
hybrid computing paradigms.

7.2. Challenges and opportunities

1) In the VSLAM systems, environment perception relies on various 
sensors, with the fusion of heterogeneous sensors enhancing 
robustness in complex settings. Bionic cameras excel in low-texture 
and varying lighting conditions, while event cameras handle high- 
dynamic scenes and motion blur, presenting opportunities for 
VSLAM system development. However, integrating heterogeneous 
sensors (e.g., RGB-D, panoramic, event, bionic) poses challenges due 
to distinct data characteristics and the need for time synchronization, 
algorithm adaptation, and efficient system operation.

2) Recently, the VSLAM field has seen innovative solutions empowered 
by advanced technologies like GNNs, SNNs, NeRF, and 3D GS, which 
outperform traditional AI-based methods in VO, LCD, and mapping. 
This has brought significant opportunities for enhancing VSLAM 
systems. However, most research focuses on improving a single key 
technology within the VSLAM framework. How can we break down 
the barriers between these key technologies to promote the system- 
level development and pragmatic applications of cross-paradigm 
HI integration-empowered VSLAM? Despite the continuous emer
gence of new technologies and ideas, research reports that have 
overcome this challenge are still lacking.

3) Cognitive neuroscience has revealed many neural mechanisms un
derlying spatial cognition and navigation. These insights drive the 
development of brain-inspired SLAM technologies and provide new 
foundations for advancing key VSLAM technologies. STDN-VO [57]
simulates the dual-stream processing of the human visual system, 

Table 4 
Comparison of large-scale neuromorphic chips.

Chips Signals On-chip 
learning

Process 
(nm)

Neurons / 
Synapses

Energy 
Efficiency 
(GSOPS/W)

Neurogrid Mixed No 180 64k/100 M 1.1
Braindrop Mixed Yes 28 4k/16 M 2630
BrainScaleS Mixed Yes 180 512/128k 10
BrainScaleS2 Mixed Yes 65 512/131k N. A.
Dynap-SEL Mixed Yes 28 1k/64k N. A.
SpiNNaker Digital Yes 130 18k/18 M 0.064
SpiNNaker2 Digital Yes 22 Configuration N. A.
Loihi Digital Yes 14 128k/128 M < 42.4
Loihi2 Digital Yes 7 1 M/120 M N. A.
TrueNorth Digital No 28 1 M/256 M 46–400
Darwin Digital No 180 2048/4.19 M N. A.
Darwin3 Digital Yes 22 2.3 M/- N. A.
Tianjic Digital No 28 39k/9.75 M 649
TianjicX Digital Yes 28 160k/20 M N. A.
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NeuroSLAM leverages the path integration mechanism of navigation 
cells [14], and some VPR technologies are inspired by the brain’s 
memory mechanisms [15]. However, translating these findings into 
reliable VSLAM applications remains challenging, involving high 
technical barriers in interdisciplinary research and uncertainties in 
cross-boundary collaboration.

4) Currently, Neumann architecture-based hardware, like Graphcore’s 
Colossus IPU (23.6 billion transistors), is nearing its limits but faces 
high energy consumption. Meanwhile, neuromorphic computing 
offers high efficiency and power consumption advantages. Quantum 
processors in development also provide opportunities for VSLAM 
through improved computing power and energy efficiency. Howev
er, challenges remain, including incomplete toolchains for neuro
morphic and quantum hardware, the huge gap from usability to 
practicality, and the difficulties of maintaining their ecosystems.

8. Perspectives and conclusion

8.1. Perspectives

1) This century is dubbed the “century of the brain” [220]. We propose 
paying close attention to neuroscience research on spatial cognition 
and navigation, as well as advancements in computational neuro
science, to drive the transformation of VSLAM. Animal brains 
explore environments and construct cognitive maps in a way that 
closely mirrors the SLAM process. However, animal brains rely 
significantly on spatial memory during place recognition, preventing 
erroneous results due to lighting or scene changes. Current VPR 
technologies struggle to replicate this capability, which is highly 
valuable for VSLAM systems. Similarly, the innate hierarchical map 
memory and adaptive navigation strategy regulation capabilities of 
brains are worth emulating in VSLAM. 

Can the brain’s adaptive navigation strategies inspire dynamic 
adaptive regulation when integrating various computational para
digms into a complete VSLAM system? Is it possible to construct 
non-single-type environmental map descriptions? For instance, in 
simple scenes with clear structural features, traditional mathemat
ical methods could enhance VSLAM efficiency and create simple map 
descriptions. In low-texture, feature-degraded scenes, complex 
computational paradigms and advanced sensors could ensure stable 
VSLAM performance and build detailed scene maps. By recon
structing the VSLAM framework using the brain’s spatial cognition 
mechanisms, we can promote the transition of VSLAM from 

tool-oriented to cognition-oriented, applicable to broader SLAM 
technology transformations.

2) We endorse the “dual-brain fusion” concept proposed by the Tianjic 
team [2]. Assuming current hardware computing power is not a 
limiting factor, we advocate fully leveraging heterogeneous hybrid 
computing in the development of next-generation SLAM systems. For 
example, researchers should employ suitable AI technologies to 
enhance VO performance, improve the LCD module, and combine 
these with conventional backend optimization and AI-enabled 
mapping methods to form a comprehensive AI-based VSLAM solu
tion. This solution can be deployed on general-purpose or AI-specific 
processors without considering power consumption. 

Alternatively, AI algorithms can be converted to SNNs using 
ANN2SNN technologies like SpikingJelly [19] and deployed on 
neuromorphic processors for low-power solutions. Moreover, the 
VO, LCD, and mapping stages are not restricted to a single compu
tational paradigm. Traditional mathematical methods, AI-enabled 
methods, and brain-inspired methods can be combined as needed 
to form a HI integration-driven VSLAM system using platforms like 
Tianjic or SpiNNaker2.

3) Traditional SLAM, which requires human intervention and lack au
tonomy, has led to the development of active SLAM, integrating 
decision-making, planning, localization, and mapping but remaining 
SLAM-focused [221]. Embodied AI, emphasizing learning through 
environmental interaction and physical embodiment [4], shares 
common needs with active VSLAM, creating a natural connection. 
Developing Embodied AI, especially embodied neuromorphic intel
ligence [3], that mimic the brain’s cognitive navigation mechanisms 
could offer new pathways for active VSLAM. 

For example, when LCD information is missing, the system could 
rely more on internal state estimation (e.g., path integration) and 
dynamically adjust perception and action strategies based on un
certainty. This transformation requires VSLAM systems to evolve 
from geometric re-constructors to embodied intelligent agents inte
grating perception, action, memory, and adaptive learning loops, 
leveraging neuromorphic computing’s low power consumption and 
real-time capabilities for more robust and intelligent active explo
ration and mapping.

4) SLAM is essentially a self-consistent joint estimation of metric- 
topological structure: it simultaneously “maps” and “localizes” in 
one shot, and then stops. The spatial prior becomes immutable as 
soon as the robot begins its moment. Dynamic obstacles or envi
ronmental changes cannot revise it, forcing the system into passive 

Fig. 2. The proposed system-level development framework.
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localization and preventing any online update. To bridge this gap, 
the future SLAM should evolve into a task-level loop where mapping, 
localization, navigation and feedback run continuously. The map 
should grow or prune like living cells as obstacles appear or disap
pear, enabling the agent to instantly re-interpret space. This process 
is much closer to human navigation mechanism and is precisely what 
spatial intelligence aims to achieve [222–224].

Recently, the research of Vision-and-Language Navigation (VLN) has 
attracted intense academic interest. It has shifted research focus from 
“geometrically correct” to “cognitively plausible” pathways, attempting 
to instill human-like spatial intelligence into navigation agents [225]. In 
fact, if we regard the map itself as a special form of natural language, an 
interpretable semantic artifact [226], so the instruction-understanding 
and environment-understanding stages in VLN already exhibit the 
hallmarks of task-level SLAM. Consequently, contemporary VLN and 
active SLAM are highly overlapping endeavors. Unlike traditional 
SLAM, VLN pursues not a static geometric description but a continuously 
evolving map that is both semantic and task-oriented.

Spatial intelligence builds upon this living map a representational 
model that mirrors the real world, performs logical inference, and en
ables explanation and decision-making. The core idea behind this 
pipeline closely resembles the human psychological process of using 
natural language to specify goals and constraints, then navigating 
through a continuous visual stream. For instance, SLAM handles low- 
level geometric-topological measurement (analogous to the 
hippocampal-entorhinal circuit), while VLN realizes high-level semantic 
interpretation and linguistic reasoning (analogous to the prefrontal- 
language network). Spatial intelligence couples the two via world 
models and predictive representations (akin to the predictive map the
ory [227]), allowing the agent not merely to “reach a location,” but to 
understand “why it should reach it” and to anticipate “what might be 
needed next.” Thus, SLAM is upgraded from a one-shot tool to a lifelong 
spatial memory system, and VLN evolves from “following a map” to 
“looking, thinking, and revising on the fly.” Together, in embodied 
navigation, they converge toward a brain-like mode of spatial cognition 
and navigation, aligning with the developmental trajectory advocated in 
this paper: from tool-oriented to cognition-oriented.

9. Conclusion

In the era of HI coexistence, VSLAM benefits from both individual HI 
paradigm and the emerging trend of cross-paradigm integration. This 
paper analyzes key progress in VSLAM from individual HI paradigm and 
proposes a system-level framework for HI integration-driven VSLAM 
systems.

The deeper significance of HI integration is to break through the 
cognitive limitations of a single computational paradigm and move to
wards integration and collaboration inspired by biological general in
telligence. The core challenge involves not only technical integration 
but also constructing effective fusion strategies across paradigms (e.g., 
data formats, computing paradigms, and hardware support) to achieve a 
synergistic outcome. This integration is expected to endow VSLAM 
systems with new qualities of environmental understanding, prediction, 
and long-term adaptation, crucial for transforming robots from simple 
spatial perception tools to intelligent agents with true cognitive abilities 
and complex interaction and autonomous learning capabilities. Ulti
mately, it aims to realize a paradigm conversion from "tool-based" to 
"cognition-based."

Furthermore, this paper also analyzes the challenges and opportu
nities for VSLAM innovation in the HI coexistence era, as well as pro
spective suggestions. It is hoped that this paper can inspire innovative 
ideas for the development of next-generation VSLAM systems.
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