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Towards the era of Heterogeneous Intelligence (HI) coexistence, this paper reviews the latest progress of Visual
Simultaneous Localization and Mapping (VSLAM) and explores the pathway of multiple HI integration-driven
VSLAM systems. This work analyzes over 220 selected publications, with a literature cut-off date of
September 2025, with papers distributed across the evolution of frontend Visual Odometry (VO), Loop Closure
Detection (LCD), backend optimization and mapping. Moreover, it also discusses the support of heterogeneous

hardware, including state-of-the-art sensors and processors. Finally, it analyzes the challenges and opportunities,
proposes a novel VSLAM framework from the view of HI integration, and provides forward-looking suggestions.
This study indicates that the cross-paradigm HI integration has the potential to transform current VSLAM
technologies from “tool-oriented” to “cognition-oriented,” providing new ideas and pathways for the next-
generation VSLAM development.

1. Introduction
1.1. Background

Nowadays, the rise of the third wave of Artificial Intelligence (AI) is
an undeniable reality. Advances in Machine Learning (ML) and Deep
Learning (DL), coupled with explosive growth in computing power and
data availability, have spurred widespread Al applications across
various domains [1]. Current DL, however, is data-driven and dominant
in specific tasks, yet far from human-level general intelligence. Towards
the target of Artificial General Intelligence (AGI) development,

brain-inspired intelligence is increasingly recognized as a pivotal
approach to bridge this gap [2]. Meanwhile, the global push for quan-
tum intelligence highlights the hybrid nature of the Heterogeneous In-
telligence (HI) coexistence era.

Navigation has always been an important starting and end point of
machine intelligence, underpinning the emergence of embodied intel-
ligence [3,4]. Since localization and mapping are essential tasks for
navigation, Simultaneous Localization and Mapping (SLAM) has been
studied for over three decades. Visual SLAM (VSLAM), a key imple-
mentation of SLAM, consists of five main components: data processing,
Visual Odometry (VO), Loop Closure Detection (LCD), backend
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optimization, and mapping [5]. Their joint optimization and simulta-
neous operation form a complete SLAM system.

Traditional VSLAM builds on mathematical paradigms, with a robust
theoretical basis, yielding milestone solutions such as ORB-SLAM [6].
However, it struggles in complex settings due to issues like feature
extraction failure, scale drift, and limited scene understanding [7].
Data-driven Al paradigms greatly mitigate these issues and excel in VO,
LCD, and mapping [8]. Examples include UnDeepVO [9] for DL-based
monocular VO, Airloop [10] for lifelong learning-based LCD, and
DS-SLAM [11] for dynamic semantic mapping.

Brain-inspired SLAM, emerging beyond classical methods, emulates
the brain’s navigation mechanisms via neurodynamic models [12].
Advances like RatSLAM [13] and NeuroSLAM [14] use Continuous
Attractor Neural Networks (CANNs) to mimic the brain’s path integra-
tion logic, rebuilding the backend optimization while fitting VSLAM
frameworks. Progress also includes brain-inspired Visual Place Recog-
nition (VPR) [15-18] and ANN2SNN methods such as SpikingJelly [19]
for converting DL to Spiking Neural Networks (SNNs).

Traditional VSLAM systems employ mature visual sensors, providing
practical solutions, such as the ORB-SLAM series [6,20,21]. Al cameras
also warrant attention [22]. Recently, bionic cameras have been used to
enhance robustness in low-texture environments [23]. Moreover, neu-
romorphic cameras [24] excel in challenging settings (e.g., motion blur
and latency), offering high efficiency, low latency and power con-
sumption, expanding VSLAM capabilities [25,26].

Despite advances in Central Processing Units (CPUs), Graphics Pro-
cessing Units (GPUs) and Al processors, von Neumann architectures still
lag behind the brain’s spatiotemporal representation and generalization.
Drawing on neuroscience insights, the state-of-the-art neuromorphic
chips, such as the Tianjic [27] and SpiNNaker2 [28], support a hybrid HI
integration of Al and brain-inspired paradigms. This represents the chip
designers’ response in the era of HI coexistence.

1.2. The connotation of the “Era of HI Coexistence” and its manifestation
to VSLAM

As known, machine’s intelligence is realized through both software
and hardware. Software’s intelligence relies on advanced algorithms
and computational paradigms, while hardware provides perceptual in-
formation, computing resources, serving as the carrier. Today’s era is
marked by the coexistence of multiple paradigms, including mathe-
matical computing, Al, brain-inspired intelligence, and even quantum
intelligence. For brevity, this paper terms this the “Era of Coexistence of
HI.” In this context, we firstly need to determine the manifestations of
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these different intelligence paradigms with obviously heterogeneous
natures (collectively referred to as HI) in VSLAM research.

On the one hand, although multiple HI paradigms coexist in the
current era, not all VSLAM research has integrated more than one HI
paradigm. This means that a VSLAM system can benefit from a single
paradigm’s contributions but may also face certain challenges. On the
other hand, a VSLAM system can also benefit from the integration of
different HI paradigms. Specifically, within the VSLAM framework,
components can be implemented by diverse computing paradigms.
Furthermore, a VSLAM system can configure heterogeneous sensors and
processors for complementary environmental perception and perfor-
mance optimization. In other words, a VSLAM system can be improved
through cross-paradigm integration (Fig. 1).

1.3. Motivation and innovation declaration

In the above two manifestations, the former is common, while the
latter is emerging. Therefore, this unique backdrop offers the VSLAM
community significant opportunities for innovation and may even
prompt a transformation in its research paradigm.

However, no existing work has systematically surveyed VSLAM
technology in the era of HI coexistence, explored cross-paradigm HI
integration pathways, or analyzes challenges and opportunities. This
gap forms our motivation. Therefore, this paper not only provides a
comprehensive review of VSLAM advances benefited from different HI
paradigms, but also dissects the trend of cross-paradigm HI integration-
empowered VSLAM. It analyzes over 220 selected publications, with a
literature cut-off date of September 2025, with papers distributed across
the evolution of VO, LCD, backend optimization and mapping.

To clarify the unique positioning and innovation of this work, a
comparison with representative surveys is detailed in Table 1. The
contributions are as follows:

1) This paper, towards the HI coexistence era, systematically dissects
the VSLAM progress from a multi-dimensional perspective and
carries out in-depth discussions and analyses.

2) This paper summarizes the roadmap of VSLAM systems empowered
by cross-paradigm HI integration and proposes a unified framework
for VSLAM system (See Section VII).

3) This paper prospectively analyzes the opportunities and challenges
of VSLAM technology in the era of HI coexistence, offering the
forward-looking perspectives and suggestions.

Note. Since quantum intelligence is still in its germination stage, it is
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Fig. 1. The VSLAM framework.
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Table 1
Comparison with existing representative surveys.

Works Year  Main Focus / Scope Distinction from Our Work

[7] 2016 A review charting SLAM M Its focus is on robust
evolution towards the perception in SLAM, with a
“Robust-Perception Age.” different purpose from ours.

Our work covers a broader
and more comprehensive
scope.

[29] 2017 A review of VSLAM advances Review from both technical
within a specific timeframe and historical points of
(2010-2016). views.

Its main effort is devoted to
the review of traditional
methods.

[30] 2022 A comprehensive survey of Its focus is on
state-of-the-art on VSLAM comprehensive review of
before 2022 feature-based VSLAM with

simulations.

Its scope includes traditional
and DL methods, forming a
subset of this work.

[31] 2019 A problem-specific review Its main focus is on a specific
focused on VSLAM for issue in VSLAM
dynamic environments. applications.

Our work is a
comprehensive survey with
a forward-looking
perspective.

[32] 2024  Areview on the impacts of Its focus is on specific,
Neural Radiance Fields groundbreaking
(NeRFs) and 3D Gaussian technologies’ contribution
Splatting (GS) to SLAM. to SLAM.

Our work is a
comprehensive survey with
a forward-looking
perspective.

[8] 2024  Two focused surveys on the Their purposes and scopes

[33] 2023  application of DL techniques are dedicated on pure DL-
across the VSLAM pipeline. based VSLAM research.

Our work covers a broader
and more comprehensive
scope.

[24] 2024  Two specialized surveys on Their purposes and scopes

[34] 2022 event-based vision and are dedicated on pure event-
VSLAM. based VSLAM research.

Our work covers a broader
and more comprehensive
scope.

[35] 2022 Three reviews of VPR/LCD, a Their scopes are component-

[36] 2021  specific module within the specific surveys, forming a

[371 2015 VSLAM framework. subset of this work.

Our work covers a broader
and more comprehensive
scope.

not included in the scope of this study.

1.4. Outlines

Sections II to V systematically review and analyze the key advances.
Section VI summarizes hardware support for system-level VSLAM
development. Section VII proposes a unified VSLAM framework suitable
for HI integration and discusses opportunities and challenges. Section
VIII offers forward-looking perspectives and concludes the paper.

2. VO progress

The VO task involves extracting environmental information from
images and estimating camera motion between adjacent images based
on the geometric relationship between the camera and spatial points.
This section systematically reviews VO progress, with corresponding
discussion and analysis.
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2.1. Traditional VO

Traditional VO methods are often categorized into feature-based and
direct methods. Feature-based methods detect salient points using
handcrafted descriptors, compute their matching relationships, and es-
timate camera motion via the Perspective-n-Point (PnP) or Bundle
Adjustment (BA) methods [38]. The ORB-SLAM series, utilizing point
feature-based VO, are widely recognized in the VSLAM community. In
addition, line and edge features are stable and easily extracted in
structured settings, reduce complexity and can be combined with point
features [39-41]. For example, StructSLAM [42] employs architectural
lines to reduce drift error. MonoSLAM [43] addresses tracking failure in
texture-less environments by extracting points, lines, and vanishing
points for feature complementarity. Cai et al. [44] review common
handcrafted descriptors (e.g., point, line, edge, corner, and region
features).

Feature-based methods dominate VO but discard most image infor-
mation. In contrast, direct methods estimate camera motion by mini-
mizing photometric errors using pixel grayscale information from two
frames, relying on grayscale invariance and nonlinear optimization.
Direct methods can be categorized into sparse, semi-dense, and dense
forms based on the number of pixels used. For example, DTAM [45], the
progenitor of direct methods, generates dense maps and camera poses by
aligning the entire image. LSD-SLAM [46] is a typical semi-dense direct
method. Direct Sparse Odometry (DSO) [47] is a sparse direct method,
estimating camera motion by minimizing sparse photometric errors for
efficient computation. FD-SLAM [48] is a dense method, using
frame-to-model to align input frames with active submaps via joint
optimization of geometric and photometric errors. Beyond the above,
semi-direct VO solutions combine the strengths of feature-based and
direct methods to balance computational efficiency and accuracy [49].
Semidirect Visual Odometry (SVO) [50] is a typical example.

2.2. Al-enabled VO

Unlike traditional methods, Al-enabled VO can learn robust repre-
sentations (e.g., depth, optical flow, feature points) automatically, and
show promise in overcoming limitations of handcrafted features and
environmental adaptivity [8,51]. This has led to renovation of the
VSLAM frontend. Following AlexNet’s breakthrough in ImageNet [52],
the powerful ability of Convolutional Neural Networks (CNNs) led
directly to the creation of PoseNet [53], marking the beginning of
data-driven VO paradigms.

Supervised learning drives end-to-end training with ground-truth
values. For example, DeepVO [54] uses a supervised CNN-LSTM
network to capture spatiotemporal dependencies in image sequences
for predicting VO trajectories. DytanVO [55] introduces a dynamic
perception module optimized via curriculum learning for dynamic ob-
ject segmentation and pose estimation. GANVO [56] enhances pose
estimation accuracy with optical flow consistency constraints in its
discriminator, while the generator produces depth maps, creating a
mutually reinforcing optimization mechanism. STDN-VO [57] mimics
the human visual system’s dual-stream mechanism, extracting spatial
and temporal features with different networks and fusing them to pre-
dict poses, significantly enhancing VO accuracy.

Recently, unsupervised and self-supervised VO methods have gained
prominence due to the scarcity of labeled data. Unsupervised methods,
pioneered by works like Zhou et al. [58] and GeoNet [59], use inherent
geometric constraints in multi-view imagery as a supervisory signal,
eliminating the need for external labels. Wang et al. [60] resolve scale
ambiguity in monocular VO via joint training of depth, optical flow, and
scale networks without annotated data. Self-supervised methods like
[61] report a Graph Neural Networks (GNN)-based solution with posi-
tional constraints for robust feature matching in harsh environments.
D3VO [62], a self-supervised VO, can jointly estimate depth, pose, and
uncertainty for high-precision pose estimation. As a self-supervised
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semantic VO method, InstanceVO [63] performs motion estimation,
depth prediction, and instance segmentation using a shared encoder. In
addition, some studies have explored weak-supervised [64] and
semi-supervised [65] VO methods.

Beyond the above, recent hybrid VO methods developed through the
joint optimization of traditional and learning-based paradigms show
promise. Lu et al. [66] incorporate pose graph and BA optimization into
DL network training for unsupervised monocular VO, preventing pose
drift via joint optimization. DF-VO [67] enforces physical consistency
between CNN-predicted depth and feature-based optical flow using a
dual-branch architecture and differentiable BA. GraphAVO [68] fuses
pixel motion information with graph-assisted optimization and cascaded
dilated convolutions to enhance pose estimation accuracy and robust-
ness. DPVO [69], building on DROID-SLAM [70], replaces dense optical
flow tracking with a sparse strategy that tracks random tile subsets. It
significantly reduces computational load and demonstrates higher ac-
curacy for monocular VO without dense optical flow tracking.
DPV-SLAM [71] then extends DPVO to form a complete, real-time,
low-memory monocular VSLAM system.

2.3. Event-based VO

Neuromorphic event cameras capture pixel-level brightness changes
instead of fixed-frame-rate intensity images, offering advantages in low-
light and high-speed motion scenarios where traditional cameras
struggle [34]. This has led to the emergence of event-based VO solutions.

For example, EventPointNet [72] converts event data into time
surfaces, extracts Harris corner features, and trains a network for key-
point detection, achieving event-based VO through feature matching
and pose estimation. Hadviger et al. [73] and Zhou et al. [74] both
proposed event-based stereo VO methods. The former relies on time
surfaces for feature detection and pose estimation by minimizing
reprojection error. The latter uses time surfaces to create spatiotemporal
data, estimates inverse depth with nonlinear optimization, fuses depth
into a semi-dense map, and tracks the camera in real time. Similar
methods are found in [75-77]. In 2022, Hidalgo-Carrio et al. [77] pro-
posed an event-aided direct sparse odometry method that tracks camera
motion by fusing event and grayscale frames, enabling accurate 6-DoF
estimation.

In addition, several studies have integrated traditional visual data
with event data to develop hybrid VO with heterogeneous camera data.
For instance, RAMP-VO [78] fuses event and image data using a
pixel-level asynchronous feature extractor, integrates features across
scales with a multi-scale fusion module, and optimizes state estimation
with differentiable BA constraints. Zhu et al. [79] enhance event-based
VO using adaptive time surface to select distinctive pixels and design a
nonlinear pose optimization method combining RGB-D and event data
to improve pose estimation accuracy and robustness. In addition, several
works integrate Inertial Measurement Units (IMUs) to develop
event-based Visual-Inertial Odometry (VIO) solutions [80-82].

2.4. Periodic discussion

The essence of VO lies in using changes in the camera’s perspective to
design effective rules to infer its pose changes. Traditional VO methods,
based on mathematical paradigms, have a solid theoretical foundation
and have achieved practical success in engineering, building on over 30
years of research. Currently, most mathematical paradigm-based VO
solutions ensure real-time efficiency on conventional commercial-grade
edge devices. Moreover, new solutions such as 360 VO [83] continue to
emerge. However, they face limitations such as poor adaptability and
robustness in low-texture settings, sensitivity to lighting changes and
motion blur in dynamic scenes. These factors form the driving force
behind the development of Al-enabled VO methods in recent years.

Al-enabled VO methods excel in representation learning for adaptive
feature representation and multi-task optimization. When computing

Neurocomputing 669 (2026) 132458

power is not a constraint, they can obviously overcome limitations of
handcrafted features, outperforming traditional VO in unstructured and
low-texture scenes. Recently, Al-enabled VO research has trended to-
ward label-free approaches. Some hybrid VO methods that integrate the
strengths of learning-based and traditional optimization methods are
promising. However, the limitations of Al-enabled VO solutions ought to
be highlighted as well. They still face challenges and may fail in dynamic
scenes and out-of-distribution conditions due to poor generalization,
weak real-time performance, and invalid representations from motion
blur and lighting changes.

Event-based VO has gained momentum recently, due to its High
Dynamic Range (HDR) and event-driven characteristics, which can
counteract dynamic blur. Current event-based VO solutions are rapidly
developing with diverse ideas coexisting. However, the asynchronous
spiking nature of event data requires additional processing steps, with
the time surface method being widely adopted. Moreover, although
event cameras are highly sensitive to dynamic changes, they suffer
significant texture loss. Moreover, there have been no new advances in
event cameras capturing depth like depth cameras. Thus, pure event
camera-based VO cannot fully replace traditional VO. Therefore, some
researchers have also reported strategies that combine the strengths of
event cameras with traditional cameras, like [78]. However, this area
remains underdeveloped. For example, integrating event camera’s
asynchronous spiking outputs with traditional visual frames still faces
challenges, as hard synchronization issues may need to be considered.

The above discussions mainly focus on VO progress with individual
HI paradigms. Building on this, we identify several open challenges.
Apart from AI’s generalization, this paper attempts to address other is-
sues from the perspective of HI integration, hoping to inspire the related
community.

1. How to ensure generalization of Al-enabled VO algorithms? The
generalization ability of Al-enabled VO is constrained by its data-
driven logic. Since data scarcity and distribution bias are objective
reality, training data for VO is often limited and unlabeled, making it
hard for DL models to learn universal representations from incom-
prehensive samples.

Yet, in LCD, lifelong learning-based solutions like AirLoop [10]
show promise in cross-domain generalization, whilst the Al-enabled
VO solutions like DPVO [69] focus on zero-shot generalization.
Maybe, we can consider to combining lifelong learning,
few-shot/zero-shot learning, and even meta learning to keep the
performance and robustness of Al-enabled VO methods under
cross-domain or out-of-distribution conditions.

2. How can we balance computational efficiency and performance?
Taking [84], it integrates three parallel threads into ORB-SLAM3 for
dynamic disturbance elimination and background completion,
equipping traditional VO with Al capabilities to improve accuracy
and adaptability. However, this also causes latency and increases
computational demands. Similar issues are common in many works
reviewed in [31].

Regarding this, we believe that focusing solely on a single para-
digm is somewhat limited. Integrating multiple HI paradigms with
software-hardware considerations might bring new insights. For
example, integrating approaches like Spiking-Yolo [85] into tradi-
tional VO and deploying it on neuromorphic processors (see Section
VI) could reduce power consumption and latency while maintaining
accuracy in dynamic object segmentation and filtering.

3. How can we seamlessly integrate the advantages of multiple HI
paradigms into VO research? Some studies like [66-68] combine
learning-based  feature  representation = with  traditional
optimization-based correction, forming hybrid strategies. Some
others like [63] and [84] integrate Al paradigms into traditional VO
systems for dynamic noise filtering. These examples reflect the
coupling of multiple HI paradigms at the algorithmic/software level.
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Studies like [78] present hardware-level fusion of different HI
paradigms.

However, in current research, complementary integration of multi-
ple HI paradigms at the software-hardware co-design level is rare. Can
we achieve cross-paradigm fusion of different HI paradigms through this
perspective to develop novel hybrid VO solutions? For example, how can
we use SNNs to learn features from event cameras, and DL to learn
features from standard frames? This approach allows us to replace the
current observation-level fusion logic with representation-level fusion,
and further integrate differentiable optimization methods into the
hybrid network more seamlessly, forming a novel hybrid VO solution.
However, this remains an open question requiring further exploration,
without a conclusion on this matter.

Note. To facilitate quick access to the essential information of
representative VO methods, this paper constructs Table 2. However, its
compilation is challenging for the substantial variability in test bench-
marks, hardware configurations, and evaluation metrics across studies,
as well as the frequent omission of reports on comparative algorithm
performance, computational efficiency, and hardware specifications. To
address this issue, we have taken publication quality, citation metrics,
timeliness, and reproducibility into consideration to provide a concise
summary in Table 2, with metrics like accuracy, robustness, and
efficiency.

3. LCD progress

In VSLAM, the LCD task is to identify previously visited locations to
correct accumulated drift in VSLAM, typically by calculating scene
similarity using VPR techniques [35]. This section reviews LCD progress,
with corresponding discussion and analysis.

3.1. Traditional LCD

Common keyframe detection methods include the Bag-of-Words
(BoW) model, geometric consistency verification, and spatial neigh-
borhood constraint. The BoW model quantizes visual features (e.g.,
SIFT, ORB) into word frequency vectors for similarity matching [88].
Geometric consistency verification filters mismatches by analyzing
feature points’ spatial distribution. For example, ORB-SLAM and
FAB-MAP 2.0 [89] use Random Sample Consensus (RANSAC) to
enhance keyframe detection accuracy despite its computational in-
tensity. Spatial neighborhood constraint leverages camera motion con-
tinuity and locality to filter keyframes, constructing a topological graph
for efficient retrieval with spatial indexing structures like octrees for fast
search [90]. Moreover, combining spatial constraints with
appearance-based retrieval can enhance LCD robustness in large-scale
environments, especially in repetitive structures, reducing mismatches
[91].

After keyframe retrieval, rules are needed to measure scene simi-
larity. Many methods assess the scene similarity using metrics like match
count, spatial uniformity, and geometric consistency verification [35,
36]. When scenes are vectorized, their similarities can be quantified
using Euclidean distance, Hamming distance, and cosine similarity, etc.
Notably, most RatSLAM-derived brain-inspired SLAM methods use vi-
sual template matching to achieve LCD [13].

3.2. Al-enabled LCD

Essentially, LCD involves designing rules to evaluate the similarity
between multiple scene description features to judge loop closure
occurrence. Al-enabled methods can extract and match features auto-
matically through representation learning, becoming valuable in LCD to
mitigate the limitations of handcrafted features. Visual and semantic
feature descriptions are commonly designed to describe scenes.

Some studies focus on using DL-designed feature descriptors to

Table 2
Summary of VO methods.
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Category

Methods

Year

Contributions

Feature-
Based

Traditional

Direct

Al-Enabled  Super-

vised

ORB-SLAM
[6]

StructSLAM
[42]

Xu et al.
[39]

DTAM
[45]

LSD-SLAM
[46]

DSO
[47]

DeepVO
[54]

DytanVO
[55]

STDN-VO
[57]

2015

2015

2023

2011

2015

2018

2017

2023

2025

Using ORB features for high-
precision pose estimation
and mapping. Accuracy:

> LSD-SLAM [46], ~PTAM
[87]; Robustness: low failure
rate; Efficiency: 25-30 Frame
Per Second (FPS) @ low-cost,
business-grade CPU.

Using architectural line
features to reduce drift error
in visual SLAM. Accuracy:

> > MonoSLAM [43];
Robustness: stable under
low-texture conditions;
Efficiency: ~40 FPS @
common commercial-grade
CPU.

Using point-line flow feature
for monocular Visual-Inertial
SLAM. Accuracy: ~ORB-
SLAMS3 [21]; Robustness:
stable under low-texture
conditions; Efficiency: ~17
FPS @ common
commercial-grade CPU.

A pioneering dense direct
method that tracks and maps
by aligning the entire image.
Accuracy: ~ PTAM [87];
Robustness: > PTAM under
motion blur; Efficiency:
depends on GPU.

A representative semi-dense
direct SLAM method.
Accuracy: ~2.5 % Root Mean
Square Error (RMSE) (KITTI);
Robustness: stable to lighting
changes; Efficiency: ~145
FPS (pixel 154 x46) @
relatively basic commercial
GPU.

A sparse direct VO method
estimating motion by
minimizing sparse
photometric errors.
Accuracy: ~ORB-SLAM [6];
Robustness: >ORB-SLAM;
Efficiency: ~55 FPS @
common commercial-grade
CPU.

Using a supervised CNN-
LSTM network to predict VO
trajectories. Accuracy:

< ORB-SLAM [6] (KITTI);
Robustness: stable under
motion blur, lighting
changes, low-texture;
Efficiency: not report.

Using curriculum learning to
optimize dynamic object
segmentation and pose
estimation. Accuracy: > >
DeepVO [54]; Robustness:
stable under dynamic scenes;
Efficiency: ~6 FPS @ 2
high-end commercial-grade
GPUs.

Mimicking the human visual
system’s dual-stream
mechanism, extracting
spatial and temporal features
with different networks and
fusing them to predict poses.
Accuracy: > > DeepVO [54]

(continued on next page)
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Table 2 (continued)

Table 2 (continued)
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Category Methods Year Contributions Category Methods Year Contributions
and ORB-SLAM [6] (KITTID); ORB-SLAM2 [20];
Robustness: good Robustness: stable under
generalization; Efficiency: motion blur; Efficiency:
~26 FPS @ high-end ~194 FPS @ relatively basic
commercial-grade GPU. commercial GPU.

Unsuper- GANVO 2019  Unsupervised monocular VO Event- ESVO 2021  An event-based stereo VO for

vised [56] where discriminator Only [74] 3D reconstruction via
enhances pose accuracy spatiotemporal consistency
through optical flow optimization and
consistency while generator probabilistic depth fusion.
produces depth maps. Accuracy: > ORB-SLAM2
Accuracy: > ORB-SLAM [6]; [20]; Robustness: stable in
Robustness: > ORB-SLAM in low light and HDR
both complex and dynamic conditions; Efficiency: ~20
scenes; Efficiency: ~30 FPS FPS (DAVIS 346) @ common
@ computing power-rich commercial-grade CPU.
commercially-grade GPU. EVIO 2022 A monocular event-based VO

Zhou et al. 2017  Pioneering unsupervised [75] using event-corner with

[58] learning of depth and ego- sliding windows graph-based
motion from video. optimization. Accuracy:
Accuracy: ~ORB-SLAM [6] > ORB-SLAM3 [21];
(KITTI); Robustness: Robustness: > ORB-SLAM3,
~ORB-SLAM,; Efficiency: not stable in low-light and HDR
reported. conditions; Efficiency: ~40

GeoNet 2018  An unsupervised learning FPS (DAVIS346) @

[59] framework for jointly computing power-rich
estimating dense depth, commercially-grade CPU.
optical flow and camera Wang et al. 2023  Achieving event-based stereo
pose. Accuracy: > [58] and [76] VO with native temporal
ORB-SLAM [6]; Robustness: resolution via continuous-
stable in occluded and time Gaussian process
texture-ambiguous regions; regression. Accuracy:
Efficiency: < 16 FPS @ > ESVO [74]; Robustness:
relatively basic commercial stable in complex motions
GPU. and HDR conditions;

Kannapiran 2023 A self-supervised stereo VO Efficiency: not report.

etal. [61] using a GNN and positional Hybrid Hidalgo- 2022  Tracking a DAVIS240C event
constraints for robust feature Carrio et al. camera’s motion by
matching. Accuracy: ~20 cm [77] combining events and
RMSE (synthetic dataset); grayscale frames, estimating
Robustness: stable with scene motion by minimizing
and lighting changes; brightness increment error.
Efficiency: ~7 FPS @ Accuracy: >ESVO [74] and
common commercial-grade ORB-SLAM [6]; Robustness:
GPU. stable under low frame rates

D3VO 2020  Using self-supervised with depth noise and contrast

[62] learning to jointly estimate noise; Efficiency: not report.
depth, pose, and uncertainty RAMP-VO 2024  Fusing event and image data
for a monocular VO. [78] using pixel-level
Accuracy: > > [58] and asynchronous feature
ORB-SLAM |[6]; Robustness: extraction and multi-scale
stable with dynamic blur and fusion with differentiable BA.
lighting changes; Efficiency: Accuracy:> DPVO [69],
not reported. ORB-SLAM2 [20],

Hybrid DF-VO 2020  Enforcing physical ORB-SLAM3 [21].

[67] consistency between CNN- Robustness: stable in
predicted depth and feature- low-light and HDR scenarios;
based optical flow using Efficiency: the training relies
differentiable BA. Accuracy: on a dedicated
> [58] and ORB-SLAM2 workstation-grade GPU
[20]; Robustness: stable without time-cost reports.
under scale-drift mitigation, Zhu et al. 2023  Using adaptive time surface
scale ambiguity resolution; [79] to select distinctive pixels
Efficiency: not report. and combines RGB-D with

Liu et al. 2024  An adaptive learning event data for improved pose

[65] framework for hybrid VO. estimation. Accuracy:
Accuracy: > DF-VO [67]; >ESVO [74]; Robustness:
Robustness: different reliable under complex
disparity distributions; dynamic motion conditions.;
Efficiency: ~9 FPS @ Efficiency: ~12 FPS (RGB-D
dedicated workstation-grade & DVXplorer Lite) / ~80 FPS
GPU. (RGB-D only) @ common

GraphAVO 2024  Enhancing pose estimation commercial-grade CPU.

[68] by fusing pixel motion with ESVO2 2024 A direct event-based VO
graph-assisted optimization. [86] approach using a stereo event

Accuracy: > [58] and

camera. Accuracy: >ESVO

(continued on next page)
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Table 2 (continued)

Category Methods Year Contributions

[74]; Robustness: stable in
low light, and HDR scenes;
Efficiency: mapping
efficiency increased by 5x
compared to ESVO @
computing power-rich
commercially-grade CPU.

enhance LCD [92]. Many others have developed specialized DL strate-
gies for representation learning of local or global visual features to
create effective scene descriptions for similarity estimation. For
instance, NetVLAD [93], an upgrade of VLAD [94], uses a CNN to extract
global image features and map images into compact vectors, improving
scene recognition accuracy over traditional BoW models. Furthermore,
without considering computational cost, some researchers use
Visual-and-Language Model (VLM) to create scene description, such as
[95]. It provides human-readable failure traceability and has inter-
pretability and real-world application potential.

Recent DL-assisted visual LCD has focused on improving effective-
ness, robustness, and real-time performance. Ma et al. [96] proposed a
fast LCD method, combining an image-to-sequence candidate selection
strategy and a feature matching algorithm with motion consistency
constraints. Memon et al. [97] used VGG16 for feature extraction and
moving object recognition, introducing a super dictionary combined
with an AE for quick scene revisit determination. GOReloc [98] employs
semantic topology graph matching and graph-kernel vector similarities
to efficiently extract candidate subgraphs, surpassing ORB-SLAM2 in
real-time performance. LoopNet [99] is an LCD method for dynamic
settings, fusing feature maps and highlighting key landmarks through a
multi-scale attention-based Siamese convolutional network. Zhou et al.
[100] proposed a lightweight Siamese capsule network for LCD,
employing depthwise separable and dilated convolutions with pruning
layers to enhance real-time performance. AirLoop [10] is a lightweight
lifelong LCD method, combining memory-aware synapses and relational
knowledge distillation to adapt to new environments. VIPeR [101] im-
proves AirLoop through adaptive mining, multi-stage memory, and
probabilistic distillation, reducing catastrophic forgetting and boosting
benchmark performance, thereby enhancing VPR in terms of adapt-
ability and robustness. I2KEN [102] is also a lifelong LCD method,
solving cross-domain adaptability and catastrophic forgetting via single-
and cross-domain knowledge augmentation, and lifelong adaptive
fusion.

Additionally, semantic descriptions are also effective for the LCD
task and can be combined with visual feature methods. Semantic de-
scriptions are primarily learning-based methods. For example, Singh
et al. [103] designed a hierarchical semantic-geometric descriptor to
fuse global scene categories and their geometric distribution, using se-
mantic labels to filter out dynamic interference, enhancing LCD per-
formance. Similarly, PlaceNet [104] extends LoopNet by learning to
ignore dynamic objects to create landmark-focused semantic de-
scriptions, robust to dynamic scenes and scale variations. AEGIS-Net
[105] and CGiS-Net [106] construct global descriptors by fusing
low-level color and geometric cues with high-level semantic features,
showcasing superior robustness compared to appearance-only methods
like NetVLAD. TextSLAM [107] models textual objects as texture-rich
planar patches, using their semantic information as landmarks to
match text semantics for keyframe detection, achieving robust LCD.

Semantic features, beyond forming scene descriptions, can pair with
visual features to reduce matching uncertainty in LCD. SLC3-SLAM [108]
enhances LCD in NeRF SLAM for better reconstruction quality using
latent codes as local features and aggregating them with semantic in-
formation. Chen et al. [109] addressed instance-level inconsistencies to
enhance LCD for dynamic scenes by integrating visual-semantic geo-
metric verification. SemanticLoop [110] creates a 3D semantic graph via
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instance-level embedding and uncertainty detection, achieving robust
LCD by geometric matching. SymbioLCD2 [111], building on Sym-
bioLCD [112], combines semantic and visual features in a graph struc-
ture, performing LCD with the Weisfeiler-Lehman kernel under temporal
constraints.

3.3. Brain-inspired VPR

While LCD is strictly a subset of VPR applications, both aim to
determine whether a particular scene has been visited. Therefore, this
paper reviews brain-inspired VPR technologies to investigate progress
beneficial to VSLAM’s implementation of LCD from the brain-inspired
computing paradigm.

Fischer et al. [113] proposed an energy-efficient event camera-based
VPR method that extracts sparse features and uses feature count dif-
ferences for rapid localization. Ev-ReconNet [114], LoCS-Net [115] and
VPRTempo [116] are all SNN-based VPR models. Ev-ReconNet pro-
cesses event streams directly to improve accuracy in extreme lighting.
LoCS-Net uses ANN2SNN conversion for fast VPR, enhancing real-time
performance. VPRTempo uses temporal encoding linked to pixel in-
tensity, trained with Spike-Timing-Dependent Plasticity (STDP) and a
supervised delta learning rule, ensuring each output spike neuron re-
sponds to a unique location. Hussaini et al. developed a series of
SNN-based VPR methods, from regularized neuron allocation [16] to a
modular region-specific ensemble system [17], and finally a modular
architecture with geographical tiling and ensemble learning to enhance
accuracy and generalization [18].

Some unique approaches also warrant attention. For example, Zhu
et al. [117] developed a spatiotemporal memory algorithm inspired by
insect mushroom body neural circuits, using neuromorphic computing
to encode spikes and store visual sequence memories for real-time visual
familiarity assessment in complex environments. Neubert et al. [15]
employed a Mini-Column Network (MCN) model inspired by the brain
neocortex for VPR tasks, simulating sequence memory and cell predic-
tive connections. They also reported combining MCN with a grid
cell-inspired model to enhance VPR [118]. Ozdemir et al. [119] focused
on Echo State Networks (ESNs) for capturing temporal relationships in
data, combining ESNs with preprocessed CNNs for VPR tasks, surpassing
some sequence matching models.

3.4. Periodic discussion

The essence of LCD is to design machine-computable rules for
describing environments and assessing scene similarity. LCD and VPR
technologies are largely similar, but LCD in VSLAM must consider
computational timeliness.

Traditional LCD methods identify keyframes and perform feature
matching for similarity comparison with historical scenes. While effec-
tive in structured environments, these methods struggle with insuffi-
cient robustness due to lighting changes, appearance variations, and
viewing angle differences. They also face challenges related to heavy
storage requirements for visual templates.

Al-enabled LCD methods automatically learn environmental de-
scriptions through representation learning, assessing scene similarity
with higher accuracy and robustness within computational timeliness
constraints. The roles of Al in LCD and VO are somewhat similar, both
involving the extraction and description of scene features, followed by
application-specific utilization. Thus, to a large extent, the previous
analysis of the strengths and weaknesses of Al-enabled VO methods in
Section II is largely applicable to Al-enabled LCD paradigms. However,
while VO tasks focus on the offset representation of scene features, LCD
focuses on their similarity. In VO, sparse semantic features are rarely
used for pose estimation and mostly serve as an auxiliary in geometric
constraints and dynamic noise filtering. In LCD, however, semantic
features are often used to enhance scene descriptions or mitigate the
negative impact of distracting backgrounds and dynamic objects.
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Brain-inspired VPR methods have introduced new sensor types (e.g.,
event cameras) and shifted computing paradigms. For instance,
appearance/feature-based solutions using SNN and ESN have brought
new changes to VSLAM’s LCD [116,119]. Notably, some studies have
explored novel mechanisms inspired by animal and insect brains neural
mechanisms, offering new insights for VPR [117,118]. These emerging
methods show benefits in computational efficiency, interpretability, and
adaptability to neuromorphic deployment, yet further exploration and
improvement are still needed in terms of models’ training effectiveness
and accuracy.

The preceding contents examine LCD advancements through the lens
of individual HI paradigms. From this foundation, we pinpoint several
open challenges. Besides Al generalization, this paper then delves into
these challenges, through the lens of HI integration. It is worth noting
that, as analyzed above, Al applications in VO and LCD tasks share many
commonalities in their underlying logic. Thus, while the perspective on
the following open challenges is similar to that in Section II, there are
differences, and some insights may be mutually beneficial.

1. How to ensure generalization of Al-enabled LCD algorithms? As
discussed in Section II, expanding the scale of high-quality training
data clearly benefits Al-enabled solutions. However, this is chal-
lenging, especially for numerous public benchmarks that are already
established and unchangeable.

Therefore, the previous discussions in Section II about using life-
long learning, few-shot/zero-shot learning, and meta-learning to
enhance the generalization and usability of Al-enabled LCD methods
are equally applicable here.

2. How can we balance computational efficiency and performance? The
insights here differ from those in the VO section. Since training an
SNN with complex network structure is difficult, there is almost no
research on using SNNs for continuous dynamic pose estimation in
VO from complex traditional image data. However, for static scene
description tasks, brain-inspired VPR methods, particularly SNN-
based solutions, can be effective. They may have huge advantages
in efficiency and power consumption on neuromorphic hardware.

Moreover, SNN-based semantic recognition solutions have demon-
strated reliable performance [85,120]. However, they still fall short of
DL in descriptor representation for complex visual environments.
Therefore, we suggest introducing brain-inspired paradigms to facilitate
neuromorphic acceleration into pure appearance-based visual feature
description methods (traditional or Al-enabled) to build visual-semantic
feature descriptors, which is a worthwhile approach.

3. How can we seamlessly integrate the advantages of multiple HI
paradigms into LCD research? Like VO, most existing LCD progress has
only preliminarily integrated multiple HI paradigms at either the algo-
rithmic level or the hardware level. For example, combining cross-modal
data from traditional and event cameras shows benefits in overcoming
single-modal limitations, enabling more diverse and reliable environ-
mental description rules [117]. Given the natural compatibility of SNNs
with event camera data and the common use of CNNs for traditional
images, relevant advances have been made in hybrid VPR like [119].
Moreover, the brain’s neural mechanisms are valuable to inspire novel
VPR ideas [118], potentially shifting VSLAM’s LCD from feature-based
to episodic memory-based approaches.

Nevertheless, in the existing VPR works, it is rare to find a study like
NeuroGPR [121] that integrates multiple HI paradigms through
software-hardware co-design. Thus, future research may explore Neu-
roGPR as a foundation for capability enhancement or practical appli-
cation, such as integrating it as an LCD module within VSLAM systems.
By the way, no similar breakthrough has been seen in the VO field. It
may have reference value for the VO progress.

Note. Table 3 offers rapid access to the essential information of
representative LCD progress. Given the huge variances in test bench-
marks, evaluation metrics, and hardware configurations across different
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Table 3

Summary of LCD/VPR methods (A, B, and C correspond to the properties of
summarized methods, representing Traditional, Al-enabled, and Brain-inspired
method types, respectively.).

A

B

C

Methods Year

Contributions

Appearance \/
-Only

Bow 2003
[88]

FAB-MAP 2.0
[89]

2009

RatSLAM
[13]

2013

NeuroSLAM
[14]

2019

NetVLAD
[93]

2016

Ma et al.
[96]

2022

LoopNet 2022

[99]

AirLoop 2022

[10]

Quantizing visual
features (e.g., SIFT,
ORB) into word
vectors. Precision &
Robustness: depends
on scenes; Efficiency:
depends on CPU.
Using RANSAC to
enhance robustness
and improve LCD
accuracy. Precision &
Robustness: depends
on scenes; Efficiency:
depends on CPU.
Using a local view cell
module to store and
match visual templates
for LCD. Precision &
Robustness: depends
on parameter
configuration;
Efficiency: depends on
parameter
configuration.
Performing LCD as
well as RatSLAM.
Accuracy, robustness,
and efficiency are all
on par with RatSLAM
[13].

Using a CNN to extract
global features and
map images into
compact vectors.
Precision: ~74 %
(average) Recall@1
(multiple datasets
from [99]);
Robustness: stable to
illumination and
viewpoint changes,
and occlusion;
Efficiency: depends on
GPU.

Using a convolutional
AE and motion
consensus with a super
dictionary. Precision:
> 80 % @ maximum
recall (KITTI);
Robustness: stable in
complex
environments;
Efficiency: ~105ms
per inference @ an
entry-level-priced
GPU.

A multi-scale
attention-based
Siamese convolutional
network for LCD.
Precision: > NetVLAD
[93]; Robustness:
stable to scene,
viewpoint, and
illumination
variations; Efficiency:
2x faster than
NetVLAD.

A lightweight lifelong
learning LCD method.
Precision: ~92 %

(continued on next page)



S. Su et al.

Table 3 (continued)

Table 3 (continued)
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A B C Methods Year Contributions A B C Methods Year Contributions
Recall@1 (Nordland); high-end commercial
Robustness: stable to CPU.
appearance changes; v/ Neubert et al. 2019  Employing MCN
Efficiency: 97-290ms [15] inspired by the human
per inference neocortex for VPR.
(hardware Precision: > 70 % @
configuration average precision
undisclosed). (Nordland);
v/ Fischer et al. 2022  Event camera-based Robustness: stable to
[113] VPR that extracts lighting/seasonal
features with changes; Efficiency:
significant changes ~2.1 s per inference @
and uses feature count a common
differences for rapid commercial-grade
VPR. Precision: ~64 % CPU.
Recall@1 (self- \/ Ozdemir et al. 2022 Combining ESNs with
collected dataset); [119] preprocessed CNNs for
Robustness: robust to VPR. Accuracy: > >
moderate speed NetVLAD [93];
variations; Efficiency: Robustness: depends
~1ms per inference on the parameter
(DAVIS346) @ a high- configuration;
end commercial CPU. Efficiency: not report.
v/ VPRTempo 2024  Employing temporal v v/ NeuroGPR 2023  Integrating both
[116] encoding linked to [121] neuromorphic and
pixel intensity, trained traditional cameras
via STDP and a and combining AI-
supervised delta enabled and brain-
learning rule. inspired hybrid
Precision: ~56 % computing paradigms.
Recall@1 (Nordland), Precision: relevant to
> NetVLAD [93]; different
Robustness: stable to environments.;
seasonal/lighting Robustness: robust to
changes; Efficiency: environmental
> 50 Hz @ a common uncertainties like
commercial-grade appearance ambiguity
CPU. and lighting changes;
\/ Hussaini et al. 2022 A regularized Efficiency: 10.5x lower
[16] weighted neuron latency & 43.6 %
allocation scheme for lower power
SNN-based VPR. consumption than
Precision: 47.5 % Jetson Xavier NX @
Recall@1 (Nordland), Tianjic.
> NetVLAD [93]; Semantic- \/ TextSLAM 2024 Modeling textual
Robustness: stable Assisted [107] objects as texture-rich
under landmarks, using text
lighting/seasonal semantic matching to
changes; Efficiency: detect keyframes and
~0.2 s per inference search for point-level
(~81 watts) @ a GPU correspondences.
(configuration Precision: >ORB-
undisclosed). SLAM and NetVLAD
\/ Hussaini et al. 2023 A modular, region- [93]; Robustness:
[17] specific SNN ensemble > NetVLAD, stable to
system for VPR. motion blur,
Precision: ~52.6 % illumination changes;
Recall@1 (Nordland), Efficiency: > NetVLAD
> NetVLAD [93] & @ entry-level-priced
[16]; Robustness: CPU.
stable to \/ SemanticLoop 2023  Constructing a 3D
seasonal/lighting [110] semantic graph via
changes; Efficiency: instance-level
not report. embedding and
v/ Hussainietal. 2025 A SNN-based VPR uncertainty detection
[18] architecture with geometric graph

integrating a
geographical tiling
mechanism and
ensemble learning.
Precision: > [16];
Robustness: stable to
seasonal/lighting
changes; Efficiency:
1-2 s perinference @ a

matching. Precision:
> 90 %@recall
(TUM); Robustness:
stable against
appearance changes
and complex scenes;
Efficiency: < 0.4 ms
per matching @ entry-
level-priced CPU.

(continued on next page)
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Table 3 (continued)

A B C Methods Year Contributions

v SymbioLCD2
[111]

2022  Constructing a graph
structure to fusion
semantic and visual
features with temporal
constraints. Precision:
> 93 %@recall
(TUM), > ORB-SLAM2
[20]; Robustness:
robust to dynamic
disturbances;
Efficiency: not report.
Expending LoopNet,
generates robust
feature
representations
through multi-scale
feature learning and
semantic fusion.
Precision: > 95 %
@recall (multiple
benchmarks);
Robustness: stable
against dynamic
scenes, illumination
changes, and
viewpoint variations;
Efficiency: > NetVLAD
[93], ~5ms per
matching @ relatively
basic commercial GPU.

v PlaceNet
[104]

2023

works, as well as the frequent omission of key comparable metrics, we
have adopted the same principles used for compiling Table 2 to prepare
Table 3.

4. Backend optimization progress

In VSLAM, backend optimization integrates the frontend’s local
perception cues to prevent mapping failures from accumulated errors.
Traditional methods model it as state estimation or nonlinear optimi-
zation. In contrast, brain-inspired SLAM methods simulate navigational
cells and path integration via brain-inspired models [122], building a
spatial experience map by integrating local cues continuously.

4.1. Traditional backend optimization

Traditional backend optimization methods are divided into filtering
and optimization methods. Filtering methods, based on Bayesian theory,
process data in real time through iterative prediction and updates. They
are suitable for dynamic environments but face high computational
complexity and limitations of the Markov assumption [38]. EKF-SLAM
[123] is an early filter-based solution. In contrast, optimization methods
reformulate SLAM as a Nonlinear Least Squares (NLS) problem, using all
historical data to achieve high accuracy.

Despite their computational demands, optimization methods have
become mainstream, supported by advances in hardware and optimi-
zation theory. Among them, BA is the most classic technique. It typically
uses Gauss-Newton or Levenberg-Marquardt methods to solve the NLS
problem. PTAM [87] separates tracking and mapping into parallel
threads, optimizing recent keyframes via local BA. The ORB-SLAM se-
ries, based on PTAM, is a prime example. LSD-SLAM [46] maintains
consistency in large-scale settings by combining semi-dense direct
methods with BA. DS-SLAM [11] and RTAB-Map [124] integrate se-
mantic information and memory management strategies in dynamic and
large-scale settings, respectively, reducing VO drift and updating the
map via BA.

Beyond BA, graph optimization models SLAM problems as a graph
structure, with nodes as poses or landmarks and edges as constraints.
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Currently, general-purpose graph optimization frameworks like g20 and
GTSAM have significantly advanced SLAM standardization and appli-
cation. In addition, the recently reported PyPose [125] has also been
proven to support the backend optimization of SLAM with high effi-
ciency. These frameworks provide flexible graph structure definitions
and efficient interfaces, lowering SLAM development barriers.

Moreover, pose graph optimization, often applied in global optimi-
zation, employs camera poses as nodes and relative measurements as
edges, reducing computational load compared to global BA. For
example, LDSO [126] uses a pose graph to correct errors post-loop
closure by optimizing only camera poses. RGB-D SLAM [127] in-
tegrates RGB features and depth into a pose graph to minimize optimi-
zation variables. In addition, factor graph optimization models SLAM as
a bipartite graph, decomposing the joint probability distribution into
factors. Its modularity aids integration of multi-sensor data and prior
knowledge. Representative cases like iSAM [128], iSAM2 [129], and
their improved versions [130-132] support incremental optimization,
efficiently processing new observations without re-optimizing the entire
graph.

4.2. Brain-inspired backend path integration

Unlike traditional ideas, the goal of brain-inspired SLAM is to
replicate the brain’s ability to encode spatial experience, integrate local
environmental cues from the SLAM frontend, and use stored spatial
memories (visual templates) to suppress cumulative error drift during
long-term mapping [13,133,134]. Brain-inspired SLAM methods receive
self-motion cues from sensors (e.g., VO, Sonar, Lidar), use CANNs to
simulate the brain’s spatial cue encoding and path integration, and
obtain spatial representations by decoding neural activity patterns. LCD
is performed via visual template matching, mimicking the brain’s
mechanism of correcting path integration errors with similar spatial
memories [122]. These commonalities transform traditional backend
optimization into a problem of optimal spatial experience encoding and
decoding.

Taking RatSLAM as an example, it used a CANN-based pose cell
network, inspired by hippocampal place cells, to encode path integra-
tion by extracting self-motion cues from VO, with visual template
matching for LCD. The spatial experience was subsequently decoded to
construct an experience map [135]. Afterwards, as neuroscience
advanced, grid cell mechanisms in the entorhinal cortex were elucidated
and integrated into algorithms like NeuroBayesSLAM [133]. Zeng et al.
[136], inspired by the entorhinal cortex’s joint encoding mechanism,
proposed a combined encoding CANN model of grid cells and
head-direction cells to replace RatSLAM’s pose cell network. Further-
more, they simplified CANN’s neurodynamics using a Bayesian proba-
bilistic framework, creating the more efficient NeuroBayesSLAM.

Currently, research is increasingly focusing on 3D navigation cells.
DolphinSLAM [137] integrates RatSLAM and FABMap, using a
CANN-based 3D place cell network to build experience maps for un-
derwater scenes. Yu proposed NeuroSLAM [14]. It constructs a joint
pose cell model using 3D grid cells and multilayer head-direction cells,
replacing RatSLAM’s pose cell network to achieve 3D path integration
and build multilayer experience maps. Thereafter, Shen et al. [138]
proposed ORB-NeuroSLAM, incorporating ORB features to improve
NeuroSLAM’s LCD and enhance experience map accuracy.

4.3. Periodic discussion

In backend optimization, both traditional and brain-inspired path-
ways, despite differing principles and computing paradigms, share the
same goal of effectively integrating the frontend’s local cues to reduce
accumulated errors and avoid mapping failure.

Traditional methods, rooted in early probabilistic computation, have
evolved from filtering methods to optimization approaches. These
methods, now mature after decades of development, still face challenges
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in computational efficiency on edge devices. Co-design of software and
hardware to enhance computational efficiency is a promising solution
[139,140].

Brain-inspired SLAM converts backend optimization into optimal
spatial experience encoding and decoding, supported by spatial mem-
ory. It simulates the brain’s path integration using brain-inspired models
and memory matching for LCD to correct experience maps. However, it
currently has lower mapping accuracy and limited ability to describe
complex environments compared to traditional methods, restricting its
practical applications. Research on navigation neural circuits is still in
its early stages, with limited understanding, making it challenging to
fully replicate the powerful path integration capabilities of animal
brains.

Therefore, research on navigation neural mechanisms and the
collaborative mechanisms of heterogeneous navigation cells is essential
for advancing brain-inspired SLAM studies. To address the low compu-
tational efficiency of CANN models, some researchers have improved
efficiency using a Bayesian framework [133], while others have accel-
erated CANNs by converting them to SNNs, utilizing neuromorphic
computing solutions [141,142].

Moreover, given that brain-inspired SLAM reconstructs the under-
lying logic of traditional backend optimization, the two seem to be in
competition in terms of global optimization in the backend. However,
notably, the ORB-NeuroSLAM [138] system attempts to introduce local
BA optimization in the frontend VO based on ORB features, which does
not conflict with the brain-inspired path integration in the backend.

5. Mapping progress

In VSLAM, backend mapping’s function design depends on frontend
processing and application requirements, not a fixed algorithmic
framework. Thus, VSLAM/s mapping methods range from sparse to
dense and from geometric to semantic, constrained by frontend feature
extraction. This paper categorizes backend mapping into geometric,
semantic, and generalized mapping based on different scene
representation.

5.1. Geometric mapping

Geometric mapping focuses on scene shape and structure, including
depth information, mesh representation, and topological representation.
Depth information, obtained from stereo vision, depth cameras, or DL
methods, can reflect the scene’s geometric structure. For example, CNN-
SLAM [143] uses a CNN to predict per-pixel depth and integrates it into
the VSLAM system for dense reconstruction.

Mesh representation constructs a mesh map by estimating the height
or depth of each mesh cell and is widely used in navigation and path
planning. For example, Gmapping [144] builds high-precision 2D oc-
cupancy grid maps widely adopted by Robot Operating System (ROS) for
indoor navigation. Adding height information to a 2D grid creates an
elevation map (2.5D map) suitable for uneven terrain navigation.

Voxel maps divide 3D space into regular grids (voxels) to record
occupancy status for 3D environmental modeling. SpOctA [145] im-
proves 3D voxel map construction efficiency using octree encoding.
Topological representation focuses on the environment’s topological
structure and is used by most brain-inspired SLAM systems to build
experience maps due to CANN’s decoding characteristics. RatSLAM
creates a 2D topological experience map [135], later extended to 2.5D
by Milford et al. [146] and to 3D by NeuroSLAM.

5.2. Semantic mapping

Semantic mapping aims to construct maps with geometric and se-
mantic information, focusing on semantic extraction and mapping
[147]. Common semantic extraction methods in VSLAM include object
detection and semantic segmentation using techniques like SSD, YOLO
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series, and other learning-based approaches.

For instance, DS-SLAM [11] removes dynamic objects using SegNet
and motion consistency checks, reducing localization errors in dynamic
environments and aiding dense semantic octree map construction.
DynaSLAM [148] performs initial semantic segmentation with a Mask
R-CNN based on ORB-SLAM2 and tracks unsegmented dynamic objects
by minimizing photometric reprojection errors. Detect-SLAM [149] and
Dynamic-SLAM [150] improve SSD detectors for specific tasks, with
similar works including YOLO-SLAM [151] and CubeSLAM [152].

In fact, VSLAM technology can be combined with many advanced
object detection and semantic segmentation methods beyond the com-
mon solutions. For example, Blitz-SLAM [153] uses BlitzNet (based on
ResNet-50) for object detection and semantic segmentation. Reviews of
object detection and semantic segmentation research over the past 20
years are in [154-156]. Latest methods based on GNN, SNN, etc., can be
found in [157-167] and are expected to positively impact semantic
mapping.

Semantic mapping integrates semantic data (e.g., object categories
and locations) with scene geometry to enhance map interpretability
[168]. For instance, SemanticFusion [169] fuses multi-view CNN se-
mantic predictions using SLAM-derived correspondences and probabi-
listic methods, producing accurate and real-time 3D semantic maps.
TextSLAM [107] embeds geometric parameters and semantic content
(text strings) of textual objects into a 3D map synchronously. Quad-
ricSLAM [170] represents objects with quadratic surfaces, integrating
geometric constraints and semantic information for a flexible and
compact representation. More related progress can be found in [147,
171,172].

5.3. Generalized mapping

Generalized mapping utilizes implicit scene representations via DL to
encode scenes compactly for reconstruction or pose estimation. For
instance, CodeSLAM [173] employs a deep AE to convert images into an
optimization-friendly format, enhancing VSLAM efficiency and accuracy
in camera pose tracking and scene reconstruction.

Recently, NeRF has advanced 3D scene representation, enabling
implicit mapping in VSLAM. iNeRF [174] first applied NeRF for pose
estimation through re-localization using a pre-trained model. iMAP
[175] then integrated NeRF into VSLAM for joint optimization of the
embedded scene map. NICE-SLAM [176] expanded this by using hier-
archical and neural implicit representations to model larger scenes.
SLC2-SLAM [108] used semantic-guided LCD tailored for NeRF SLAM
with graph optimization and BA, delivering superior reconstruction
quality, especially in large-scale scenes. Vox-Fusion [177] combines the
sparse-voxel octree with neural implicit representations, yielding a
memory-efficient, dynamically extensible, real-time dense SLAM
framework.

Additionally, recent advances like mixed spiking NeRF [178], event
camera-based E-NeRF [179] and E*NeRF [180], which integrates an
event camera with a standard RGB camera, offer efficient SNN-based
NeRF solutions that may boost neuromorphic VSLAM development.
However, NeRF-assisted generalized mapping faces challenges such as
over-smoothing and catastrophic forgetting, despite strengths in feature
mapping, tracking, and novel view synthesis.

Moreover, 3D GS have attracted attention for their efficient
rendering, explicit representation, and robust optimization. GS-SLAM
[181] combines 3D Gaussians with splat rendering, encapsulating scene
geometry and appearance using 3D Gaussians, opacity, and spherical
harmonics. This approach significantly enhances rendering speed and
map optimization efficiency compared to NeRF-based methods.
Photo-SLAM [182], SplaTAM [183], and GS-SLAM all model scenes with
3D GS, representing each point as a Gaussian distribution with direction,
elongation, color, and opacity.

Not only that, event-driven 3D GS progress based on event cameras is
increasing. For example, EOGS [184] optimizes rendering using
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brightness changes from an event camera with an event brightness loss
function, enabling high-quality 3D GS reconstruction under motion blur
and low-light conditions. Ev-GS [185] infers 3D GS from monocular
event camera data, excelling in reducing blurring, improving visual
quality, and offering computational and memory efficiency. E2GS [186]
integrates event camera data with GS, using both blurry images and
event data to enhance image deblurring and novel view synthesis quality
while achieving faster training and rendering speeds. These methods
offer efficient rendering, explicit representation, and rich optimization
capabilities, while utilizing submaps to prevent catastrophic forgetting
and maintain computational efficiency.

5.4. Periodic discussion

Backend mapping is determined by frontend processing and appli-
cation needs. The frontend dictates input data quality and type, while
the application defines the map’s functionality and form. For instance,
when the frontend uses feature-based methods, VSLAM systems typi-
cally construct sparse maps (e.g., PTAM [87], ORB-SLAM). Direct
methods can produce sparse, semi-dense (e.g., DSO [47]), or dense maps
(e.g., DTAM [45]). Semi-direct methods, like semi-direct multimap
SLAM [187], can combine both approaches for robust real-time recon-
struction in dynamic scenes. Brain-inspired SLAMs (e.g., RatSLAM,
NeuroSLAM) create geometric topological maps via CANNSs for spatial
experience encoding and decoding.

This paper classifies backend mapping strategies into three cate-
gories. Geometric mapping focuses on depth information, mesh repre-
sentation, and topological structure. Semantic mapping integrates object
detection and semantic segmentation methods to enrich environment
representations through semantic extraction and mapping. Generalized
mapping transitions to implicit representations and neural rendering,
enabling lightweight storage and enhanced expressiveness. State-of-the-
art techniques like NeRF and 3D GS redefine mapping paradigms [32].

From an algorithmic perspective, brain-inspired SLAM excels at
capturing environmental topology, while Al-enabled SLAM is proficient
at extracting semantic information. Humans can simultaneously encode
both topological and semantic information into abstract the cognitive
map during exploration. Therefore, it is not difficult to envision that
integrating Al-based semantic understanding with brain-inspired topo-
logical descriptions could emulate human spatial cognition, driving the
development of cognition-driven VSLAM for robust, large-scale VSLAM
systems. However, how to adapt the current VSLAM framework to
incorporate neural implicit map representations, especially event-driven
approaches like [180,186], etc., requires further investigation.

6. Hardware support for VSLAM systems

Hardware enables the practical application of intelligence. Tradi-
tional visual sensors face challenges like motion blur and light sensi-
tivity, despite improvements in resolution, sensitivity, and dynamic
range. Event cameras and bio-inspired visual sensors address these is-
sues by providing novel visual perception capabilities for VSLAM sys-
tems. Hardware computational power remains a critical limiting factor
for intelligence, especially in Al, as evidenced by the 20-year dormancy
of DL due to computational constraints.

Moreover, the evolution of backend optimization pathway in SLAM
also highlights the significant impact of hardware computing power on
system-level SLAM development. From a system-level perspective,
beyond algorithms, it is essential to summarize the heterogeneous visual
sensors and computing hardware that benefit VSLAM technology in the
era of HI coexistence. This will facilitate more researchers in generating
innovative ideas.

6.1. Visual sensors

Traditional visual sensors like monocular and stereo cameras
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estimate depth using multi-view geometric constraints but are limited
by feature matching accuracy and adaptability to dynamic environ-
ments. RGB-D cameras, which directly capture depth via structured light
or time-of-flight technology, perform well in low-texture scenes. ORB-
SLAM2 is a prime example that supports monocular, stereo, and RGB-
D cameras. Panoramic cameras, which use multi-lens stitching or fish-
eye lenses to expand the field of view, enhance global scene under-
standing and have been demonstrated in NeuroSLAM [14]. Moreover,
multi-camera setups are employed in VSLAM systems like BE-SLAM
[188] and BEV-SLAM [189].

Bionic cameras, modeled after insects’ optic flow navigation mech-
anism, offers a wider field of view, stronger moving object detection,
and higher light sensitivity. Despite limited research focus, recent
progress demonstrates significant advantages in enhancing VSLAM
performance in low-texture environments. Specifically, Liu et al. [23,
190] developed a VSLAM system with a bionic eye that actively searches
for texture, thereby improving system robustness. For research progress
on bio-inspired visual sensors, refer to [191].

Event cameras, inspired by primate retinal structures. The Dynamic
Vision Sensor (DVS) series, Asynchronous Time-based Image Sensor
(ATIS) series, Dynamic and Active-pixel Vision Sensor (DAVIS) series,
mimic the peripheral retinal structure by detecting brightness changes
and outputting event streams [34]. Moreover, exemplified by Vidar
[192] developed by Huang’s team, uses foveal photoreceptors and
proposes an integrative visual sampling model. Beyond them, SCAMP-5
[193] is a novel event camera that integrates sensing and computing by
processing optical signals on-chip and synchronously parallelizing all
pixels within the same clock cycle, unlike DVS’s asynchronous output.
Benefit from event-based DVS, Kreiser et al. [141] promoted the
development of neuromorphic SLAM. Research on event -based VPR
benefits LCD [117,194]. In addition, NeuroGPR [121] integrates both
RGB-D and DAVIS346 cameras for place recognition.

6.2. Chips and processors

In non-mobile environments, high-performance CPU/GPU worksta-
tions support intensive Al processing but are unsuitable for edge appli-
cations in unmanned systems due to latency and energy constraints. This
has driven advancements in dedicated AI processors for mobile devices
[195]. Low-cost edge devices like Raspberry Pi and Orange Pi are used
for prototyping but lack power for complex VSLAM tasks [196].
Moderate-capability edge Al modules, like NVIDIA’s Jetson TX2 and
Rockchip’s RK3588, are suitable for moderately complex VSLAM tasks.
Dedicated Al-accelerated devices, including edge GPUs (e.g., NVIDIA’s
Jetson NX and Orin series), Google’s Coral TPU, and Cambricon’s NPU,
enhance energy efficiency. Jetson-SLAM [140] achieves over 60 FPS on
Jetson NX and exceeds 200 FPS on desktop GPUs. Hybrid Al computing
boxes can integrate multi-core CPUs, GPUs, and NPUs for real-time
mapping and localization [197]. Other notable processors include Ho-
rizon Robotics’ Brain Processing Units (BPUs) [198] and Graphcore’s
Intelligent Processing Units (IPUs) [199], etc.

Despite advances in Al-specific accelerators, von Neumann
architecture-based computing units face diminishing returns from
Moore’s Law. Amid the era of HI co-development, neuromorphic
computing has emerged as a solution. Successful achievements include
the Neurogrid [200] and Braindrop [201], the BrainScaleS series [202],
the SpiNNaker series [28,203], SynSense’s DYNAPs [204], Dynap-SEL
[205] and Dynap-SE2 [206], Intel’s Loihi series [207,208], International
Business Machines (IBM)’s TrueNorth [209], China’s Darwin series
[210,211], and Tianjic series chips [2,27], ect. Yoon et al. [142]
demonstrated a 65-nanometer NeuroSLAM accelerator IC based on
neuromorphic computing, achieving ultra-low-power VSLAM function-
ality via mixed-signal oscillators. Theoretically, ANN2SNN technology
can theoretically convert DL solutions into SNNs, facilitating
ultra-low-power SLAM through neuromorphic computing. However,
this requires a system-level coordinated solution.
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Additionally, quantum intelligence has introduced new hardware
computing solutions in the era of HI coexistence, such as IBM’s Flamingo
processor, Google’s Willow chip, and PsiQuantum’s Omega chip
[212-215]. However, quantum computing chips and sensors have not
yet been applied in SLAM and thus are not detailed here. They may
potentially benefit the system-level development of VSLAM in the
future.

6.3. Periodic discussion

In the era of HI coexistence, manifestations of intelligence are
diverse, including heterogeneous sensors, computing methods, and
processors. They offer opportunities for next-generation VSLAM tech-
nologies and systems. As previously noted, hardware support, including
sensors and chips, embodies intelligence to meet practical application
needs. Compared to traditional visual sensors, bio-inspired visual sen-
sors and event cameras have equipped VSLAM systems with new
perception capabilities in the era of HI coexistence. At present, a VSLAM
system can even integrate multi-cameras, taking BEV-SLAM [189] as an
example.

Today, Al continues to innovate with increasingly mature Al-specific
processors. However, constraints from the von Neumann architecture
limit further progress in optimizing power consumption and improving
computational efficiency. In contrast, brain-inspired intelligence, with
substantial global investment, holds broad future prospects [216].
Despite incomplete understanding of the brain’s architecture, research
findings have inspired advanced neuromorphic chips like Intel’s Loihi2,
leading to the world’s largest neuromorphic computing system, Hala
Point [217]. It is designed to support advanced research in
brain-inspired intelligence and address efficiency and sustainability
challenges in current AL This paper does not address quantum
computing in-depth due to the lack of mature and practical quantum
chips. Table 4 shows comparison of current neuromorphic chips.

7. Framework, challenges and opportunities

This section delineates the challenges and opportunities confronting
VSLAM in the era of HI coexistence and proposes a systematic frame-
work to catalyze the emerging trend of cross-paradigm HI integration for
future community-wide innovation.

7.1. System-level development framework

Currently, multiple HI paradigms are at varying stages of develop-
ment, playing diverse roles in VSLAM research. For example, mathe-
matical computing-based VSLAM has developed over three decades with
low costs and good scalability but struggles in complex environments

Table 4

Comparison of large-scale neuromorphic chips.
Chips Signals  On-chip  Process Neurons / Energy

learning  (nm) Synapses Efficiency
(GSOPS/W)

Neurogrid Mixed No 180 64k/100 M 1.1
Braindrop Mixed Yes 28 4k/16 M 2630
BrainScaleS Mixed Yes 180 512/128k 10
BrainScaleS2 ~ Mixed Yes 65 512/131k N. A
Dynap-SEL Mixed Yes 28 1k/64k N. A.
SpiNNaker Digital ~ Yes 130 18k/18 M 0.064
SpiNNaker2 Digital ~ Yes 22 Configuration ~ N. A.
Loihi Digital Yes 14 128k/128 M <42.4
Loihi2 Digital ~ Yes 7 1M/120 M N. A
TrueNorth Digital No 28 1 M/256 M 46-400
Darwin Digital No 180 2048/4.19M N. A.
Darwin3 Digital ~ Yes 22 2.3 M/- N. A.
Tianjic Digital No 28 39k/9.75M 649
TianjicX Digital Yes 28 160k/20 M N. A.
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due to reliance on human-designed rules. Al-enabled VSLAM, driven by
data and representation learning, has improved accuracy by overcoming
limitations of traditional computational rules designed by human
experience, but it faces high-complexity computation and weak gener-
alization. Al-specific chips enable some real-time solutions but their
high costs are impractical for low-cost robots. Brain-inspired VSLAM can
theoretically excel in computational efficiency and optimize power
consumption on neuromorphic hardware, but it trails traditional
methods in accuracy and faces high costs.

Each of these HI paradigms has strengths and weaknesses at the
software and hardware levels. Therefore, formulating mutually benefi-
cial fusion schemes is pivotal for promoting the practical application of
HI integration in the future VSLAM research. Given this, this paper
proposes a VSLAM framework from the perspective of multiple HI
integration (Fig. 2). This framework divides the development of a
VSLAM system into the input end, algorithm end, and deployment end.
It can also serve as a template to expand the input end and guide the
system-level development of general SLAM systems.

The input end includes heterogeneous visual sensors, from which the
VSLAM system selects one or more categories to support the algorithm
end. The algorithm end makes up with the computational layer (het-
erogeneous computing methods) and the functional layer (VSLAM
functions like VO, LCD, backend optimization and mapping). During
development, suitable computing paradigms in the computational layer
are selected based on input data characteristics to meet the functional
layer’s requirements. The functional layer can leverage hybrid
computing paradigms if key technologies are coordinated to support full
VSLAM functionality. Taking semi-bionic SLAM [218], it employed
feature-based VO and a AlexNet for LCD, with CANN-based head--
direction and place cell network to construct experience map. Liu, et al.
[219] combined Yolov3 with RatSLAM to create a semantic-embedded
topological experience map.

Additionally, the deployment end can use hybrid processors as
needed. Some hybrid Al computing boxes have been designed to
improve efficiency with joint AI computing power. The Tianjic chip and
SpiNNaker2 both support the integration of Al and brain-inspired
models. NeuroGPR [121] is a Tianjic-empowered example, using
hybrid computing paradigms.

7.2. Challenges and opportunities

1) In the VSLAM systems, environment perception relies on various
sensors, with the fusion of heterogeneous sensors enhancing
robustness in complex settings. Bionic cameras excel in low-texture
and varying lighting conditions, while event cameras handle high-
dynamic scenes and motion blur, presenting opportunities for

VSLAM system development. However, integrating heterogeneous

sensors (e.g., RGB-D, panoramic, event, bionic) poses challenges due

to distinct data characteristics and the need for time synchronization,
algorithm adaptation, and efficient system operation.

Recently, the VSLAM field has seen innovative solutions empowered

by advanced technologies like GNNs, SNNs, NeRF, and 3D GS, which

outperform traditional Al-based methods in VO, LCD, and mapping.

This has brought significant opportunities for enhancing VSLAM

systems. However, most research focuses on improving a single key

technology within the VSLAM framework. How can we break down
the barriers between these key technologies to promote the system-
level development and pragmatic applications of cross-paradigm

HI integration-empowered VSLAM? Despite the continuous emer-

gence of new technologies and ideas, research reports that have

overcome this challenge are still lacking.

3) Cognitive neuroscience has revealed many neural mechanisms un-
derlying spatial cognition and navigation. These insights drive the
development of brain-inspired SLAM technologies and provide new
foundations for advancing key VSLAM technologies. STDN-VO [57]
simulates the dual-stream processing of the human visual system,

2

—
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Fig. 2. The proposed system-level development framework.

NeuroSLAM leverages the path integration mechanism of navigation
cells [14], and some VPR technologies are inspired by the brain’s
memory mechanisms [15]. However, translating these findings into
reliable VSLAM applications remains challenging, involving high
technical barriers in interdisciplinary research and uncertainties in
cross-boundary collaboration.

4) Currently, Neumann architecture-based hardware, like Graphcore’s

Colossus IPU (23.6 billion transistors), is nearing its limits but faces
high energy consumption. Meanwhile, neuromorphic computing
offers high efficiency and power consumption advantages. Quantum
processors in development also provide opportunities for VSLAM
through improved computing power and energy efficiency. Howev-
er, challenges remain, including incomplete toolchains for neuro-
morphic and quantum hardware, the huge gap from usability to
practicality, and the difficulties of maintaining their ecosystems.

8. Perspectives and conclusion
8.1. Perspectives

1) This century is dubbed the “century of the brain” [220]. We propose

paying close attention to neuroscience research on spatial cognition
and navigation, as well as advancements in computational neuro-
science, to drive the transformation of VSLAM. Animal brains
explore environments and construct cognitive maps in a way that
closely mirrors the SLAM process. However, animal brains rely
significantly on spatial memory during place recognition, preventing
erroneous results due to lighting or scene changes. Current VPR
technologies struggle to replicate this capability, which is highly
valuable for VSLAM systems. Similarly, the innate hierarchical map
memory and adaptive navigation strategy regulation capabilities of
brains are worth emulating in VSLAM.

Can the brain’s adaptive navigation strategies inspire dynamic
adaptive regulation when integrating various computational para-
digms into a complete VSLAM system? Is it possible to construct
non-single-type environmental map descriptions? For instance, in
simple scenes with clear structural features, traditional mathemat-
ical methods could enhance VSLAM efficiency and create simple map
descriptions. In low-texture, feature-degraded scenes, complex
computational paradigms and advanced sensors could ensure stable
VSLAM performance and build detailed scene maps. By recon-
structing the VSLAM framework using the brain’s spatial cognition
mechanisms, we can promote the transition of VSLAM from
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2)

3

—

4)

tool-oriented to cognition-oriented, applicable to broader SLAM
technology transformations.

We endorse the “dual-brain fusion” concept proposed by the Tianjic
team [2]. Assuming current hardware computing power is not a
limiting factor, we advocate fully leveraging heterogeneous hybrid
computing in the development of next-generation SLAM systems. For
example, researchers should employ suitable AI technologies to
enhance VO performance, improve the LCD module, and combine
these with conventional backend optimization and Al-enabled
mapping methods to form a comprehensive Al-based VSLAM solu-
tion. This solution can be deployed on general-purpose or Al-specific
processors without considering power consumption.

Alternatively, Al algorithms can be converted to SNNs using

ANN2SNN technologies like SpikingJelly [19] and deployed on
neuromorphic processors for low-power solutions. Moreover, the
VO, LCD, and mapping stages are not restricted to a single compu-
tational paradigm. Traditional mathematical methods, Al-enabled
methods, and brain-inspired methods can be combined as needed
to form a HI integration-driven VSLAM system using platforms like
Tianjic or SpiNNaker2.
Traditional SLAM, which requires human intervention and lack au-
tonomy, has led to the development of active SLAM, integrating
decision-making, planning, localization, and mapping but remaining
SLAM-focused [221]. Embodied Al, emphasizing learning through
environmental interaction and physical embodiment [4], shares
common needs with active VSLAM, creating a natural connection.
Developing Embodied Al, especially embodied neuromorphic intel-
ligence [3], that mimic the brain’s cognitive navigation mechanisms
could offer new pathways for active VSLAM.

For example, when LCD information is missing, the system could
rely more on internal state estimation (e.g., path integration) and
dynamically adjust perception and action strategies based on un-
certainty. This transformation requires VSLAM systems to evolve
from geometric re-constructors to embodied intelligent agents inte-
grating perception, action, memory, and adaptive learning loops,
leveraging neuromorphic computing’s low power consumption and
real-time capabilities for more robust and intelligent active explo-
ration and mapping.

SLAM is essentially a self-consistent joint estimation of metric-
topological structure: it simultaneously “maps” and “localizes” in
one shot, and then stops. The spatial prior becomes immutable as
soon as the robot begins its moment. Dynamic obstacles or envi-
ronmental changes cannot revise it, forcing the system into passive
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localization and preventing any online update. To bridge this gap,
the future SLAM should evolve into a task-level loop where mapping,
localization, navigation and feedback run continuously. The map
should grow or prune like living cells as obstacles appear or disap-
pear, enabling the agent to instantly re-interpret space. This process
is much closer to human navigation mechanism and is precisely what
spatial intelligence aims to achieve [222-224].

Recently, the research of Vision-and-Language Navigation (VLN) has
attracted intense academic interest. It has shifted research focus from
“geometrically correct” to “cognitively plausible” pathways, attempting
to instill human-like spatial intelligence into navigation agents [225]. In
fact, if we regard the map itself as a special form of natural language, an
interpretable semantic artifact [226], so the instruction-understanding
and environment-understanding stages in VLN already exhibit the
hallmarks of task-level SLAM. Consequently, contemporary VLN and
active SLAM are highly overlapping endeavors. Unlike traditional
SLAM, VLN pursues not a static geometric description but a continuously
evolving map that is both semantic and task-oriented.

Spatial intelligence builds upon this living map a representational
model that mirrors the real world, performs logical inference, and en-
ables explanation and decision-making. The core idea behind this
pipeline closely resembles the human psychological process of using
natural language to specify goals and constraints, then navigating
through a continuous visual stream. For instance, SLAM handles low-
level geometric-topological measurement (analogous to the
hippocampal-entorhinal circuit), while VLN realizes high-level semantic
interpretation and linguistic reasoning (analogous to the prefrontal-
language network). Spatial intelligence couples the two via world
models and predictive representations (akin to the predictive map the-
ory [227]), allowing the agent not merely to “reach a location,” but to
understand “why it should reach it” and to anticipate “what might be
needed next.” Thus, SLAM is upgraded from a one-shot tool to a lifelong
spatial memory system, and VLN evolves from “following a map” to
“looking, thinking, and revising on the fly.” Together, in embodied
navigation, they converge toward a brain-like mode of spatial cognition
and navigation, aligning with the developmental trajectory advocated in
this paper: from tool-oriented to cognition-oriented.

9. Conclusion

In the era of HI coexistence, VSLAM benefits from both individual HI
paradigm and the emerging trend of cross-paradigm integration. This
paper analyzes key progress in VSLAM from individual HI paradigm and
proposes a system-level framework for HI integration-driven VSLAM
systems.

The deeper significance of HI integration is to break through the
cognitive limitations of a single computational paradigm and move to-
wards integration and collaboration inspired by biological general in-
telligence. The core challenge involves not only technical integration
but also constructing effective fusion strategies across paradigms (e.g.,
data formats, computing paradigms, and hardware support) to achieve a
synergistic outcome. This integration is expected to endow VSLAM
systems with new qualities of environmental understanding, prediction,
and long-term adaptation, crucial for transforming robots from simple
spatial perception tools to intelligent agents with true cognitive abilities
and complex interaction and autonomous learning capabilities. Ulti-
mately, it aims to realize a paradigm conversion from "tool-based" to
"cognition-based."

Furthermore, this paper also analyzes the challenges and opportu-
nities for VSLAM innovation in the HI coexistence era, as well as pro-
spective suggestions. It is hoped that this paper can inspire innovative
ideas for the development of next-generation VSLAM systems.
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